Math 2, Winter 2016

PRACTICE PROBLEMS FOR MIDTERM 1 — ANSWERS

- 1. (0,1) and $(2,\infty)$.
- 2. Local maximum at x = 2, absolute maximum at x = 2, no local minima, no absolute minima.
- 3. 4 feet per second.
- 4. Increasing on $(-\infty, 0)$ and $(2, \infty)$; decreasing on (0, 2); concave up on $(-1, \infty)$; concave down on $(-\infty, -1)$.
- 5. 68 feet.
- 6. Increasing on $(-\infty, -2)$ and $(2, \infty)$; decreasing on (-2, 2); concave up on $(0, \infty)$; concave down on $(-\infty, 0)$.
- 7. $20\pi \text{ m}^2/\text{s}$.
- 8. Increasing on $(-\infty, 0)$; decreasing on $(0, \infty)$; concave up on $(-\infty, -1)$ and $(1, \infty)$; concave down on (-1, 1).
- 9. C.
- 10. 60 in^3/s .
- (a) Positive on (-∞, -√2) and (√2,∞); negative on (-√2,0) and (0,√2); zero at x = 0, ±√2.
 (b) Increasing on (-1,0) and (1,∞); decreasing on (-∞, -1) and (0,1).
 (c) Concave up on (-∞, -¹/_{√3}) and (¹/_{√3},∞); concave down on (-¹/_{√3}, ¹/_{√3}).
- 12. c = 1.
- 13.54.
- 14. Negative, increasing, concave up.
- 15. x = 0.
- 16. $-20\sqrt{3}$ in²/s.
- 17. 1 m/s.
- (a) No horizontal asymptotes; vertical asymptote x = 0.
 (b) Increasing on (-∞, -3) and (3,∞); decreasing on (-3,0) and (0,3).

- (c) Concave up on $(0, \infty)$; concave down on $(-\infty, 0)$.
- (d) Local minimum at x = 3; local maximum at x = -3.
- 19. Horizontal asymptote x = 1; vertical asymptote x = 0. (Note that x = 2 is not an asymptote: if you cancel a factor of x 2 from the top and bottom of the fraction, you find that x = 2 is a removable discontinuity, with $\lim_{x \to 2} f(x) = 4$.)
- 20. Increasing on $(-\infty, -3)$ and $(-1, \infty)$; decreasing on (-3, -1); concave up on $(-2, \infty)$; concave down on $(-\infty, -2)$.
- 21. $\sqrt{5}$, at x = 2.
- 22. $\frac{3}{20\pi}$ cm/hr.