Math 2, Winter 2016

Practice Problems for Midterm 1 - Answers

1. $(0,1)$ and $(2, \infty)$.
2. Local maximum at $x=2$, absolute maximum at $x=2$, no local minima, no absolute minima.
3. 4 feet per second.
4. Increasing on $(-\infty, 0)$ and $(2, \infty)$; decreasing on $(0,2)$; concave up on $(-1, \infty)$; concave down on $(-\infty,-1)$.
5. 68 feet.
6. Increasing on $(-\infty,-2)$ and $(2, \infty)$; decreasing on $(-2,2)$; concave up on $(0, \infty)$; concave down on $(-\infty, 0)$.
7. $20 \pi \mathrm{~m}^{2} / \mathrm{s}$.
8. Increasing on $(-\infty, 0)$; decreasing on $(0, \infty)$; concave up on $(-\infty,-1)$ and $(1, \infty)$; concave down on $(-1,1)$.
9. C.
10. $60 \mathrm{in}^{3} / \mathrm{s}$.
11. (a) Positive on $(-\infty,-\sqrt{2})$ and $(\sqrt{2}, \infty)$; negative on $(-\sqrt{2}, 0)$ and $(0, \sqrt{2})$; zero at $x=0, \pm \sqrt{2}$.
(b) Increasing on $(-1,0)$ and $(1, \infty)$; decreasing on $(-\infty,-1)$ and $(0,1)$.
(c) Concave up on $\left(-\infty,-\frac{1}{\sqrt{3}}\right)$ and $\left(\frac{1}{\sqrt{3}}, \infty\right)$; concave down on $\left(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$.
12. $c=1$.
13. 54.
1. Negative, increasing, concave up.
2. $x=0$.
3. $-20 \sqrt{3} \mathrm{in}^{2} / \mathrm{s}$.
4. $1 \mathrm{~m} / \mathrm{s}$.
5. (a) No horizontal asymptotes; vertical asymptote $x=0$.
(b) Increasing on $(-\infty,-3)$ and $(3, \infty)$; decreasing on $(-3,0)$ and $(0,3)$.
(c) Concave up on $(0, \infty)$; concave down on $(-\infty, 0)$.
(d) Local minimum at $x=3$; local maximum at $x=-3$.
6. Horizontal asymptote $x=1$; vertical asymptote $x=0$. (Note that $x=2$ is not an asymptote: if you cancel a factor of $x-2$ from the top and bottom of the fraction, you find that $x=2$ is a removable discontinuity, with $\lim _{x \rightarrow 2} f(x)=4$.)
7. Increasing on $(-\infty,-3)$ and $(-1, \infty)$; decreasing on $(-3,-1)$; concave up on $(-2, \infty)$; concave down on $(-\infty,-2)$.
8. $\sqrt{5}$, at $x=2$.
9. $\frac{3}{20 \pi} \mathrm{~cm} / \mathrm{hr}$.
