Math 2, Winter 2016

Daily Homework \#10 - Solutions

3.9.14. Find the most general antiderivative of $3 \cos (t)-4 \sin (t)$.

Solution. An antiderivative of $\cos (t)$ is $\sin (t)$, and an antiderivative of $\sin (t)$ is $-\cos (t)$, so the most general antiderivative of $3 \cos (t)-4 \sin (t)$ is $3 \sin (t)+4 \cos (t)+C$.
3.9.20. Find the antiderivative F of $f(x)=x+2 \sin (x)$ that satisfies $F(0)=-6$.

Solution. An antiderivative of x is $\frac{1}{2} x^{2}$, and an antiderivative of $\sin (x)$ is $-\cos (x)$, so the general antiderivative of f is

$$
F(x)=\frac{1}{2} x^{2}-2 \cos (x)+C .
$$

We find C by setting $x=0$ and substituting $F(0)=-6$:

$$
F(0)=\frac{1}{2}\left(0^{2}\right)-2 \cos (0)+C \quad \Rightarrow \quad-6=-2+C \quad \Rightarrow \quad C=-4
$$

Therefore, $F(x)=\frac{1}{2} x^{2}-2 \cos (x)-4$.
3.9.33. Find f, given that $f^{\prime \prime}(x)=-2+12 x-12 x^{2}$ and $f(0)=4$ and $f^{\prime}(0)=12$.

Solution. If $f^{\prime \prime}(x)=-2+12 x-12 x^{2}$, then the antiderivative is

$$
f^{\prime}(x)=-2 x+6 x^{2}-4 x^{3}+C_{1}
$$

We find C_{1} by setting $x=0$ and substituting $f^{\prime}(0)=12$:

$$
f^{\prime}(0)=-2(0)+6\left(0^{2}\right)-4\left(0^{3}\right)+C_{1} \quad \Rightarrow \quad 12=C_{1} .
$$

Therefore, $f^{\prime}(x)=-2 x+6 x^{2}-4 x^{3}+12$. The antiderivative of this is

$$
f(x)=-x^{2}+2 x^{3}-x^{4}+12 x+C_{2}
$$

We find C_{2} by setting $x=0$ and substituting $f(0)=4$:

$$
f(0)=-0^{2}+2\left(0^{3}\right)-0^{4}+12(0)+C_{2} \quad \Rightarrow \quad 4=C_{2} .
$$

Therefore, $f(x)=-x^{2}+2 x^{3}-x^{4}+12 x+4$.
3.9.47. The graph of f^{\prime} is shown in the figure. Sketch the graph of f if f is continuous and $f(0)=-1$.

Solution. From $x=0$ to $x=1$, the graph of f^{\prime} is at constant $y=2$; so the graph of f is a line with constant slope 2 . From $x=1$ to $x=2$, the graph of f^{\prime} is at constant $y=1$; so the graph of f is a line with constant slope 1 . From $x=2$ to $x=3$, the graph of f^{\prime} is at constant $y=-1$; so the graph of f is a line with constant slope -1 . These three line
segments must go end-to-end because f is continuous, and the graph must begin at $(0,-1)$ because $f(0)=-1$. Thus the graph of f is as follows:

4.2.33. The graph of f is shown. Evaluate each integral by interpreting it in terms of areas.
(a) $\int_{0}^{2} f(x) d x$

Solution. This is a trapezoid, and its area is $\frac{1}{2}(1+3) \cdot 2=4$.
(b) $\int_{0}^{5} f(x) d x$

Solution. We can calculate it in three pieces:

$$
\int_{0}^{5} f(x) d x=\int_{0}^{2} f(x) d x+\int_{2}^{3} f(x) d x+\int_{3}^{5} f(x) d x .
$$

The first piece was done in (a), and we got 4 . The second piece is a rectangle with area $3 \cdot 1=3$. The third piece is a triangle with area $\frac{1}{2} \cdot 3 \cdot 2=3$. Therefore, the total integral is $4+3+3=10$.
(c) $\int_{5}^{7} f(x) d x$

Solution. This is a triangle, but it is under the x axis and thus has negative area: $\frac{1}{2} \cdot(-3) \cdot 2=-3$.
(d) $\int_{0}^{9} f(x) d x$

Solution. We can calculate it in three pieces:

$$
\int_{0}^{9} f(x) d x=\int_{0}^{5} f(x) d x+\int_{5}^{7} f(x) d x+\int_{7}^{9} f(x) d x
$$

The first two pieces were done in (b) and (c), and we got 10 and -3 respectively. The third piece is a trapezoid, but it is under the x axis and thus has negative area: $-\frac{1}{2}(3+2) \cdot 2=-5$. Therefore, the total integral is $10-3-5=2$.
4.2.37. Evaluate the integral $\int_{-3}^{0}\left(1+\sqrt{9-x^{2}}\right) d x$ by interpreting it in terms of areas.

Solution. This is the graph:

The region under the graph is a quarter of a circle (radius 3), stacked on top of a 3×1 rectangle. The integral is the combined area: $\frac{1}{4} \pi \cdot 3^{2}+3 \cdot 1=\frac{9}{4} \pi+3 \approx 10.07$.
4.2.39. Evaluate the integral $\int_{-1}^{2}|x| d x$ by interpreting it in terms of areas.

Solution. This is the graph:

The region under the graph is two triangles. The first triangle has area $\frac{1}{2} \cdot 1 \cdot 1=\frac{1}{2}$, and the second triangle has area $\frac{1}{2} \cdot 2 \cdot 2=2$. The integral is the total area of $\frac{1}{2}+2=\frac{5}{2}=2.5$.

