Math 2, Winter 2016
Daily Homework \#18 - Solutions
9.2.3-6. Match the differential equation with its direction field. Give reasons for your answer.
3. $y^{\prime}=2-y$;
4. $y^{\prime}=x(2-y)$;
5. $y^{\prime}=x+y-1$;
6. $y^{\prime}=\sin (x) \sin (y)$.

Solution. For $y^{\prime}=2-y$, the slope is positive for $y<2$, zero for $y=2$, and negative for $y>2$. Also, the slope does not depend on x. Slope field III has these features.

For $y^{\prime}=x(2-y)$, the slope is zero when $y=2$ or when $x=0$. Furthermore, when $x>0$ and $y>2$, the slope is negative. The only slope field that has these features is I.

For $y^{\prime}=x+y-1$, we see that the slope is negative below the line $y=-x+1$, zero on this line, and positive above this line. This happens in slope field IV.

For $y^{\prime}=\sin (x) \sin (y)$, we know it's II because that's the only option left. We also know it because the slope in 2 is zero when $x=0$ or when $y=0$, and $\sin (x) \sin (y)$ is zero at those points too (and other points, of course).
9.3.1. Solve the differential equation $\frac{d y}{d x}=x y^{2}$.

Solution.

$$
\begin{aligned}
\frac{d y}{d x} & =x y^{2} \\
\frac{d y}{y^{2}} & =x d x \\
\int y^{-2} d y & =\int x d x \\
-y^{-1} & =\frac{1}{2} x^{2}+C \\
y & =-\frac{1}{\frac{1}{2} x^{2}+C} .
\end{aligned}
$$

9.3.2. Solve the differential equation $\frac{d y}{d x}=x e^{-y}$.

Solution.

$$
\begin{aligned}
\frac{d y}{d x} & =x e^{-y} ; \\
e^{y} d y & =x d x ; \\
\int e^{y} d y & =\int x d x \\
e^{y} & =\frac{1}{2} x^{2}+C ; \\
y & =\ln \left(\frac{1}{2} x^{2}+C\right) .
\end{aligned}
$$

9.3.11. Find the solution of $\frac{d y}{d x}=\frac{x}{y}$ that satisfies $y(0)=-3$.

Solution.

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{x}{y} \\
y d y & =x d x \\
\int y d y & =\int x d x \\
\frac{1}{2} y^{2} & =\frac{1}{2} x^{2}+C \\
y^{2} & =x^{2}+D
\end{aligned}
$$

(where we set $D=2 C$). We can find D using the initial condition of $y(0)=-3$:

$$
(-3)^{2}=0^{2}+D \quad \Rightarrow \quad D=9
$$

Now let's substitute this value of D, and solve for y :

$$
\begin{aligned}
y^{2} & =x^{2}+9 \\
y & = \pm \sqrt{x^{2}+9}
\end{aligned}
$$

Because $y(0)=-3$, this tells us to take the negative square root, and our solution to the initial value problem is

$$
y=-\sqrt{x^{2}+9}
$$

9.3.12. Find the solution of $\frac{d y}{d x}=\frac{\ln (x)}{x y}$ that satisfies $y(1)=2$.

Solution.

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{\ln (x)}{x y} \\
y d y & =\frac{\ln (x)}{x} d x \\
\int y d y & =\int \frac{\ln (x)}{x} d x
\end{aligned}
$$

The integral of y is $\frac{1}{2} y^{2}$, but what is the integral of $\frac{\ln (x)}{x}$? We need to do a u substitution: $u=\ln (x)$, and $d u=\frac{1}{x} d x$. Then the integral becomes

$$
\int \ln (x) \frac{1}{x} d x=\int u d u=\frac{1}{2} u^{2}+C=\frac{1}{2} \ln (x)^{2}+C
$$

Then the integration by parts gives us

$$
\frac{1}{2} y^{2}=\frac{1}{2} \ln (x)^{2}+C .
$$

Now would be a good time to plug in the initial condition and solve for C. We are given $y(1)=2$, so we get:

$$
\begin{aligned}
\frac{1}{2} \cdot 2^{2} & =\frac{1}{2} \cdot \ln (1)^{2}+C ; \\
2 & =0+C ; \\
C & =2 .
\end{aligned}
$$

Now let's substitute this value of C, and solve for y :

$$
\begin{aligned}
\frac{1}{2} y^{2} & =\frac{1}{2} \ln (x)^{2}+2 \\
y^{2} & =\ln (x)^{2}+4 \\
y & = \pm \sqrt{\ln (x)^{2}+4}
\end{aligned}
$$

Because $y(1)=2$, this tells us to take the positive square root, and our solution to the initial value problem is

$$
y=\sqrt{\ln (x)^{2}+3}
$$

9.3.19. Find an equation of the curve that passes through the point $(0,1)$ and whose slope at (x, y) is $x y$.

Solution. This means that $\frac{d y}{d x}=x y$ and $y(0)=1$. Then

$$
\begin{aligned}
\frac{1}{y} d y & =x d x \\
\int \frac{1}{y} d y & =\int x d x \\
\ln |y| & =\frac{1}{2} x^{2}+C
\end{aligned}
$$

At this point we substitute the initial condition to find C :

$$
\ln |1|=\frac{1}{2} 0^{2}+C \quad \Rightarrow \quad 0=0+C \quad \Rightarrow \quad C=0 .
$$

Now we substitute this value of C and solve for y :

$$
\begin{aligned}
\ln |y| & =\frac{1}{2} x^{2} ; \\
|y| & =e^{\frac{1}{2} x^{2}} ; \\
y & = \pm e^{\frac{1}{2} x^{2}} .
\end{aligned}
$$

Because $y(0)=1$, this tells us to take the positive solution: $y=e^{\frac{1}{2} x^{2}}$.

