Math 2, Winter 2016

## DAILY HOMEWORK #24 — SOLUTIONS

8.1.7. Find the exact length of the curve  $y = 1 + 6x^{3/2}$ ,  $0 \le x \le 1$ . Solution.  $y' = 9x^{1/2}$ , so  $(y')^2 = 81x$ , so the arc length is

$$\int_0^1 \sqrt{1 + (y')^2} \, dx = \int_0^1 \sqrt{1 + 81x} = \frac{1}{81} \cdot \frac{2}{3} \left(1 + 81x\right)^{3/2} \Big]_0^1 = \frac{2}{243} \left(82^{3/2} - 1\right) \approx 6.1$$

**8.1.8.** Find the exact length of the curve  $y^2 = 4(x+4)^3$ ,  $0 \le x \le 2$ , y > 0.

**Solution.** We can write the curve as  $y = 4(x+4)^{3/2}$  (taking the positive square root because y > 0). Then  $y' = 6(x+4)^{1/2}$ , so  $(y')^2 = 36(x+4) = 36x + 144$ , and the arc length is

$$\int_{0}^{2} \sqrt{1 + (y')^{2}} \, dx = \int_{0}^{2} \sqrt{36x + 145} = \frac{1}{36} \cdot \frac{2}{3} \left(36x + 145\right)^{3/2} \Big]_{0}^{2} = \frac{1}{54} \left(217^{3/2} - 145^{3/2}\right) \approx 26.9$$

**8.1.17.** Set up (but do not evaluate) an integral to find the exact length of the curve  $y = \ln(1 - x^2), \ 0 \le x \le \frac{1}{2}$ .

**Solution.**  $y' = \frac{-2x}{1-x^2}$ , so the arc length is

$$\int_{0}^{1/2} \sqrt{1 + \left(\frac{-2x}{1 - x^2}\right)^2} \, dx$$

If you want to simplify this, this is what you get:

$$\begin{split} \int_{0}^{1/2} \sqrt{1 + \frac{4x^2}{1 - 2x^2 + x^4}} \, dx &= \int_{0}^{1/2} \sqrt{\frac{1 - 2x^2 + x^4}{1 - 2x^2 + x^4}} + \frac{4x^2}{1 - 2x^2 + x^4} \, dx \\ &= \int_{0}^{1/2} \sqrt{\frac{1 + 2x^2 + x^4}{1 - 2x^2 + x^4}} \, dx \\ &= \int_{0}^{1/2} \sqrt{\frac{(1 + x^2)^2}{(1 - x^2)^2}} \, dx \\ &= \int_{0}^{1/2} \frac{1 + x^2}{1 - x^2} \, dx, \end{split}$$

and you can learn how to do this integral in Math 8.

8.1.41. Find the length of the curve 
$$y = \int_1^x \sqrt{t^3 - 1} dt$$
,  $1 \le x \le 4$ .

Solution. By the Fundamental Theorem of Calculus (part 1),

$$y' = \sqrt{x^3 - 1}.$$

Then the arc length is

$$\int_{1}^{4} \sqrt{1 + (y')^{2}} \, dx = \int_{1}^{4} \sqrt{1 + (x^{3} - 1)} \, dx = \int_{1}^{4} \sqrt{x^{3}} \, dx = \int_{1}^{4} x^{3/2} \, dx$$
$$= \frac{2}{5} x^{5/2} \Big]_{1}^{4} = \frac{2}{5} (32 - 1) = \frac{62}{5}.$$

5.2.11 and 5.3.18 solutions are on the following two pages.

5.2.11. Find the volume of the solid obtained by rotating the region bounded by the curves  $y = x^2$ ,  $x = y^2$ , about the line y=1. Solution. x=Y<sup>2</sup>/ The curve  $x = y^2$  is rewritten as  $y = \pm \sqrt{x}$ , so the intersection is  $x^2 = \pm \sqrt{x} = x$ y=x2  $= \frac{1}{2} \times (x^{3}-1) = 0$   $= \frac{1}{2} \times (x^{3}-1) = 0$ - y=1 Inner radius.  $r=1-\sqrt{x}$ Duter radius,"  $R = 1 - x^{2}$ . So the volume is  $\int_{0}^{1} \left( f c R^{2} - \pi r^{2} \right) dx = \pi \int_{0}^{1} \left( (1 - x^{2})^{2} - (1 - \sqrt{x})^{2} \right) dx$  $= \pi \int_{0}^{1} \left( \# 2\sqrt{x} - x - 2x^{2} + x^{4} \right) dx$  $= \pi \left( 2 \cdot \frac{2}{3} \times \frac{3}{2} - \frac{1}{2} \times \frac{2}{3} - \frac{2}{3} \times \frac{3}{5} + \frac{1}{5} \times 5 \right) \int_{0}^{1}$  $= T\left(\left(\frac{4}{3} - \frac{1}{2} - \frac{2}{3} + \frac{1}{5}\right) - 0\right) = \frac{11\tau}{30}.$ (3)

5.3.18. Use cylindrical shells to find the volume generated  
by rotating the region bounded by the curves  
$$y = x_1^2$$
,  $y = 2 - x^2$   
about the line  $x = 1$ .  
Solution.  
The flat region  $\longrightarrow$ 





So the volume is  $\int_{-1}^{1} (2\pi r h) dx = 2\pi \int_{-1}^{1} (1-x)(2-2x^2) dx$  $= \frac{1}{1} \left( 2 - 2x - 2x^2 + 2x^3 \right) dx$  $= 2\pi \left( 2x - x^{2} - \frac{2}{3}x^{3} + \frac{1}{2}x^{4} \right) \Big|_{-1}^{1}$  $=\frac{16\pi}{3}$