Math 2, Winter 2016

DALy HOMEWORK #3 — SOLUTIONS

3.1.68. Show that 5 is a critical number of the function
g(z) =2+ (z - 5)°

but g does not have a local extreme value at 5.

Solution. The derivative is

d(x) = 3(z — 5)%

To find the critical numbers, we set ¢'(z) = 0:
3(x —5)*=0; (x —5)*=0; r—5=0; r=05.

Therefore 5 is a critical number of g. In fact, 5 is the only critical number of g.

To find out whether there is a local extremum (i.e. local min or max) at 5, we will use the
first-derivative test. (If you try the second-derivative test, it will be inconclusive.) The one

critical number is 5, so we can put 4 and 6 into ¢’ to see whether ¢’ is positive or negative
before and after 5.

Jg4)=34-5?%*=3-(-1)*=3, ¢(6)=36-5>=3-1>=3.

This shows that ¢’ is positive before and after 5: it does not cross from negative to positive,

and it does not cross from positive to negative. So the first-derivative test says g does not
have a local extremum at 5.

This is what ¢ and ¢’ look like:

12 \ |
o ;|
"u‘ I \ {
/ 10 5 '.I I,'

/ [ \ [

|" - 1 J

8l \
’ / : \
5 \ f
- 6 \ /
— [ ,
\
1 1 1 A ./ P 1 1 1 [ "\ |
i - 4 \ f
1 2 3 YA 5 §] | [ \'.\ I,-"
/ \ /
{ 2 A /
|
/ o /
- 1 i N PPN S S S S S L™y

0 1 2 3 4 5 &1 T

9@ =2+ @5y (x) = 3(x - 5"

As you can see, ¢’ does not cross the horizontal axis at x = 5: it only touches it.



3.2.6. Let f(x) = tan(x). Show that f(0) = f(m) but there is no number ¢ in (0, )
such that f'(c) = 0. Why does this not contradict Rolle’s theorem?

Solution.  Since tan(0) = 0 and tan(w) = 0, f has the same value at 0 and at .
However, f'(x) = sec?(x), which is never zero:
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sec’(z) =0 =

so sec’(r) = 0 is impossible.
This does not contradict Rolle’s theorem, because f is not continuous on [0, 7]: it has a

vertical asymptote at x = 7/2.

3.2.25. Does there exist a function f such that f(0) = —1, f(2) =4, and f'(x) < 2 for
all z?

Solution. No, such a function cannot exist. This is similar to example 5 in section
3.2. If f is a differentiable function with f(0) = —1 and f(2) = 4, then by the mean-value
theorem there is some number c¢ in the interval (0,2) such that

so f'(c) =2.5> 2.
3.2.32. At 2:00 pm a car’s speedometer reads 30 mi/h. At 2:10 pm it reads 50 mi/h.
Show that at some time between 2:00 and 2:10 the acceleration is exactly 120 mi/h.

Solution. Let v(t) be the speed when the time is ¢ past 2:00. Then v(0 h) = 30 mi/h
and v(§ h) = 50 mi/h (since 2:10 is ¢ = ¢ h past 2:00), so the average rate of change of v
on the interval [0 h, % h] is

v(gh) —v(0h) 50 mi/h— 30 mi/h
lh-0h Ih—0h

= 120 mi/h*,

So, by the mean-value theorem, there is a time ¢ in (0 h, 1 h) at which v'(c) = 120 mi/h®.

Now, v is speed as a function of time, so v’ is acceleration as a function of time. Therefore,
c is a time between 2:00 and 2:10 at which the acceleration is 120 mi/h’.
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3.3.25.  Sketch the graph of a function that satisfies f'(x) <0 and f"(x) <0 for all x.

Solution. Because f'(z) < 0, the function must always be decreasing. Because
f"(z) < 0, the function must always be concave-downward. One way of thinking is that the
derivative must be negative and decreasing, meaning it is getting more and more negative:
the function is decreasing steeper and steeper. One such function’s graph is shown as a
solution in the back of the textbook. Another example is f(z) = —e”, which looks like this:
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