Math 2, Winter 2016

Daily Homework \#3 - Solutions

3.1.68. Show that 5 is a critical number of the function

$$
g(x)=2+(x-5)^{3}
$$

but g does not have a local extreme value at 5 .
Solution. The derivative is

$$
g^{\prime}(x)=3(x-5)^{2} .
$$

To find the critical numbers, we set $g^{\prime}(x)=0$:

$$
3(x-5)^{2}=0 ; \quad(x-5)^{2}=0 ; \quad x-5=0 ; \quad x=5
$$

Therefore 5 is a critical number of g. In fact, 5 is the only critical number of g.
To find out whether there is a local extremum (i.e. local min or max) at 5 , we will use the first-derivative test. (If you try the second-derivative test, it will be inconclusive.) The one critical number is 5 , so we can put 4 and 6 into g^{\prime} to see whether g^{\prime} is positive or negative before and after 5 .

$$
g^{\prime}(4)=3(4-5)^{2}=3 \cdot(-1)^{2}=3 ; \quad g^{\prime}(6)=3(6-5)^{2}=3 \cdot 1^{2}=3
$$

This shows that g^{\prime} is positive before and after 5: it does not cross from negative to positive, and it does not cross from positive to negative. So the first-derivative test says g does not have a local extremum at 5 .

This is what g and g^{\prime} look like:

$$
g(x)=2+(x-5)^{3}
$$

$$
g^{\prime}(x)=3(x-5)^{2}
$$

As you can see, g^{\prime} does not cross the horizontal axis at $x=5$: it only touches it.
3.2.6. Let $f(x)=\tan (x)$. Show that $f(0)=f(\pi)$ but there is no number c in $(0, \pi)$ such that $f^{\prime}(c)=0$. Why does this not contradict Rolle's theorem?

Solution. Since $\tan (0)=0$ and $\tan (\pi)=0, f$ has the same value at 0 and at π. However, $f^{\prime}(x)=\sec ^{2}(x)$, which is never zero:

$$
\sec ^{2}(x)=0 \quad \Rightarrow \quad \frac{1}{\cos ^{2}(x)}=0 \quad \Rightarrow \quad \frac{1}{\cos ^{2}(x)} \cdot \cos ^{2}(x)=0 \cdot \cos ^{2}(x) \quad \Rightarrow \quad 1=0
$$

so $\sec ^{2}(x)=0$ is impossible.
This does not contradict Rolle's theorem, because f is not continuous on $[0, \pi]$: it has a vertical asymptote at $x=\pi / 2$.
3.2.25. Does there exist a function f such that $f(0)=-1, f(2)=4$, and $f^{\prime}(x) \leq 2$ for all x ?

Solution. No, such a function cannot exist. This is similar to example 5 in section 3.2. If f is a differentiable function with $f(0)=-1$ and $f(2)=4$, then by the mean-value theorem there is some number c in the interval $(0,2)$ such that

$$
f^{\prime}(c)=\frac{f(2)-f(0)}{2-0}=\frac{4-(-1)}{2-0}=2.5
$$

so $f^{\prime}(c)=2.5>2$.
3.2.32. At 2:00 pm a car's speedometer reads $30 \mathrm{mi} / \mathrm{h}$. At 2: 10 pm it reads $50 \mathrm{mi} / \mathrm{h}$. Show that at some time between 2:00 and 2:10 the acceleration is exactly $120 \mathrm{mi} / \mathrm{h}$.

Solution. Let $v(t)$ be the speed when the time is t past 2:00. Then $v(0 \mathrm{~h})=30 \mathrm{mi} / \mathrm{h}$ and $v\left(\frac{1}{6} \mathrm{~h}\right)=50 \mathrm{mi} / \mathrm{h}$ (since 2:10 is $t=\frac{1}{6} \mathrm{~h}$ past 2:00), so the average rate of change of v on the interval $\left[0 \mathrm{~h}, \frac{1}{6} \mathrm{~h}\right.$] is

$$
\frac{v\left(\frac{1}{6} \mathrm{~h}\right)-v(0 \mathrm{~h})}{\frac{1}{6} \mathrm{~h}-0 \mathrm{~h}}=\frac{50 \mathrm{mi} / \mathrm{h}-30 \mathrm{mi} / \mathrm{h}}{\frac{1}{6} \mathrm{~h}-0 \mathrm{~h}}=120 \mathrm{mi} / \mathrm{h}^{2} .
$$

So, by the mean-value theorem, there is a time c in $\left(0 \mathrm{~h}, \frac{1}{6} \mathrm{~h}\right)$ at which $v^{\prime}(c)=120 \mathrm{mi} / \mathrm{h}^{2}$.
Now, v is speed as a function of time, so v^{\prime} is acceleration as a function of time. Therefore, c is a time between 2:00 and 2:10 at which the acceleration is $120 \mathrm{mi} / \mathrm{h}^{2}$.
3.3.25. Sketch the graph of a function that satisfies $f^{\prime}(x)<0$ and $f^{\prime \prime}(x)<0$ for all x.

Solution. Because $f^{\prime}(x)<0$, the function must always be decreasing. Because $f^{\prime \prime}(x)<0$, the function must always be concave-downward. One way of thinking is that the derivative must be negative and decreasing, meaning it is getting more and more negative: the function is decreasing steeper and steeper. One such function's graph is shown as a solution in the back of the textbook. Another example is $f(x)=-e^{x}$, which looks like this:

