Math 2, Winter 2016

Daily Homework \#5 - Solutions

3.1.51. Find the absolute maximum and absolute minimum values of $f(x)=x+\frac{1}{x}$ on the interval [0.2, 4].

Solution. We can write $f(x)=x+x^{-1}$, so the derivative is

$$
f^{\prime}(x)=1-x^{-2}=1-\frac{1}{x^{2}}
$$

To find the critical numbers, we first set $f^{\prime}(x)=0$:

$$
1-\frac{1}{x^{2}}=0 ; \quad 1=\frac{1}{x^{2}} ; \quad x^{2}=1 ; \quad x=1 \text { or }-1 .
$$

So 1 and -1 are the numbers where f^{\prime} is zero. We also find where f^{\prime} is undefined: this happens for $x^{2}=0$, so $x=0$. The numbers we have found are 1,0 , and -1 ; but 0 and -1 are not in the domain $[0.2,4]$, so 1 is the only critical number of f in $[0.2,4]$.

To find the (absolute) maximum and minimum, we test the critical points and the endpoints of the domain:

$$
f(0.2)=5.2 ; \quad f(1)=2 ; \quad f(4)=4.25
$$

The highest of these values is 5.2 , so the absolute maximum value is $f(0.2)=5.2$. The lowest of these values is 2 , so the absolute minimum value is $f(1)=2$.

This is what f looks like:

3.1.53. Find the absolute maximum and absolute minimum values of $f(t)=t \sqrt{4-t^{2}}$ on the interval $[-1,2]$.

Solution. We can write $f(t)=t\left(4-t^{2}\right)^{1 / 2}$, and we can take the derivative using the product rule and the chain rule:

$$
\begin{aligned}
f^{\prime}(t) & =(t)^{\prime} \cdot\left(4-t^{2}\right)^{1 / 2}+t \cdot\left(\left(4-t^{2}\right)^{1 / 2}\right)^{\prime} \\
& =1 \cdot\left(4-t^{2}\right)^{1 / 2}+t \cdot \frac{1}{2}\left(4-t^{2}\right)^{-1 / 2} \cdot\left(4-t^{2}\right)^{\prime} \\
& =1 \cdot\left(4-t^{2}\right)^{1 / 2}+t \cdot \frac{1}{2}\left(4-t^{2}\right)^{-1 / 2} \cdot(-2 t)=\sqrt{4-t^{2}}-\frac{t^{2}}{\sqrt{4-t^{2}}}
\end{aligned}
$$

To find the critical numbers, we first set $f^{\prime}(t)=0$:

$$
\begin{aligned}
\sqrt{4-t^{2}}-\frac{t^{2}}{\sqrt{4-t^{2}}} & =0 \\
\sqrt{4-t^{2}} & =\frac{t^{2}}{\sqrt{4-t^{2}}} ; \\
\times \sqrt{4-t^{2}} & \times \sqrt{4-t^{2}} \\
4-t^{2} & =t^{2} \\
2 t^{2} & =4 \quad \Rightarrow \quad t^{2}=2 \quad \Rightarrow \quad t= \pm \sqrt{2} .
\end{aligned}
$$

So $\sqrt{2}$ and $-\sqrt{2}$ are the numbers where f^{\prime} is zero. But $-\sqrt{2} \approx-1.4$ is not in the domain $[-1,2]$, so the only critical number we care about is $\sqrt{2} \approx 1.4$, which is in $[-1,2]$.

We also find where f^{\prime} is undefined. The $\sqrt{4-t^{2}}$ in the denominator is undefined when $4-t^{2} \leq 0$, which happens whenever $t \leq-2$ or $t \geq 2$. The only such t in the domain $[-1,2]$ is $t=2$, which we were already going to test because it is an endpoint.

To find the (absolute) maximum and minimum, we test the critical number $\sqrt{2}$ and the endpoints of the domain:

$$
f(-1)=-\sqrt{3} \approx-1.7 ; \quad f(\sqrt{2})=2 ; \quad f(2)=0
$$

The highest of these values is 2 , so the absolute maximum value is $f(\sqrt{2})=2$. The lowest of these values is $-\sqrt{3}$, so the absolute minimum value is $f(-1)=-\sqrt{3}$.

This is what f looks like:

$$
f(t)=t \sqrt{4-t^{2}}
$$

3.4.10. Find $\lim _{x \rightarrow \infty} \frac{1-x^{2}}{x^{3}-x+1}$ or show that the limit does not exist.

Solution A.

$$
\lim _{x \rightarrow \infty} \frac{1-x^{2}}{x^{3}-x+1}=\lim _{x \rightarrow \infty} \frac{1 / x^{2}}{1 / x^{2}} \cdot \frac{1-x^{2}}{x^{3}-x+1}=\lim _{x \rightarrow \infty} \frac{\frac{1}{x^{2}}-\frac{x^{2}}{x^{2}}}{\frac{x^{3}}{x^{2}}-\frac{x}{x^{2}}+\frac{1}{x^{2}}}=\lim _{x \rightarrow \infty} \frac{\frac{1}{x^{2}}-1}{x-\frac{1}{x}+\frac{1}{x^{2}}} .
$$

As $x \rightarrow \infty$, the top of this approaches 1 and the bottom approaches ∞, so the whole fraction approaches 0 . Therefore, the limit is 0 .

Solution B. $\lim _{x \rightarrow \infty}\left(1-x^{2}\right)=-\infty$ and $\lim _{x \rightarrow \infty}\left(x^{3}-x+1\right)=\infty$, so L'Hôpital's Rule applies:

$$
\lim _{x \rightarrow \infty} \frac{1-x^{2}}{x^{3}-x+1}=\lim _{x \rightarrow \infty} \frac{\left(1-x^{2}\right)^{\prime}}{\left(x^{3}-x+1\right)^{\prime}}=\lim _{x \rightarrow \infty} \frac{-2 x}{3 x^{2}-1}
$$

Now $\lim _{x \rightarrow \infty}(-2 x)=-\infty$ and $\lim _{x \rightarrow \infty}\left(3 x^{2}-1\right)=\infty$, so again L'Hôpital's Rule applies:

$$
\lim _{x \rightarrow \infty} \frac{-2 x}{3 x^{2}-1}=\lim _{x \rightarrow \infty} \frac{(-2 x)^{\prime}}{\left(3 x^{2}-1\right)^{\prime}}=\lim _{x \rightarrow \infty} \frac{-2}{6 x}=0 .
$$

Solution C. In a polynomial, the term that dominates as $x \rightarrow \infty$ is the term with the highest power of x. In the top polynomial, this term is $-x^{2}$; in the bottom polynomial, this term is x^{3}. So,

$$
\lim _{x \rightarrow \infty} \frac{1-x^{2}}{x^{3}-x+1}=\lim _{x \rightarrow \infty} \frac{-x^{2}}{x^{3}}=\lim _{x \rightarrow \infty} \frac{-1}{x}=0
$$

3.4.12. Find $\lim _{x \rightarrow-\infty} \frac{4 x^{3}+6 x^{2}-2}{2 x^{3}-4 x+5}$ or show that the limit does not exist.

Solution A. $\lim _{x \rightarrow-\infty} \frac{4 x^{3}+6 x^{2}-2}{2 x^{3}-4 x+5}=$

$$
=\lim _{x \rightarrow-\infty} \frac{1 / x^{3}}{1 / x^{3}} \cdot \frac{4 x^{3}+6 x^{2}-2}{2 x^{3}-4 x+5}=\lim _{x \rightarrow-\infty} \frac{\frac{4 x^{3}}{x^{3}}+\frac{6 x^{2}}{x^{3}}-\frac{2}{x^{3}}}{\frac{2 x^{3}}{x^{3}}-\frac{4 x}{x^{3}}+\frac{5}{x^{3}}}=\lim _{x \rightarrow-\infty} \frac{4+\frac{6}{x}-\frac{2}{x^{3}}}{2-\frac{4}{x^{2}}+\frac{5}{x^{3}}} .
$$

As $x \rightarrow-\infty$, the top of this approaches 4 and the bottom approaches 2 , so the whole fraction approaches $4 / 2=2$. Therefore, the limit is 2 .

Solution B. $\lim _{x \rightarrow-\infty}\left(4 x^{3}+6 x^{2}-2\right)=-\infty$ and $\lim _{x \rightarrow-\infty}\left(2 x^{3}-4 x+5\right)=-\infty$, so L'Hôpital's Rule applies:

$$
\lim _{x \rightarrow-\infty} \frac{4 x^{3}+6 x^{2}-2}{2 x^{3}-4 x+5}=\lim _{x \rightarrow-\infty} \frac{\left(4 x^{3}+6 x^{2}-2\right)^{\prime}}{\left(2 x^{3}-4 x+5\right)^{\prime}}=\lim _{x \rightarrow-\infty} \frac{12 x^{2}+12 x}{6 x^{2}-4} .
$$

Now $\lim _{x \rightarrow-\infty}\left(12 x^{2}+12 x\right)=\infty$ and $\lim _{x \rightarrow-\infty}\left(6 x^{2}-4\right)=\infty$, so again L'Hôpital's Rule applies:

$$
\lim _{x \rightarrow-\infty} \frac{12 x^{2}+12 x}{6 x^{2}-4}=\lim _{x \rightarrow-\infty} \frac{\left(12 x^{2}+12 x\right)^{\prime}}{\left(6 x^{2}-4\right)^{\prime}}=\lim _{x \rightarrow-\infty} \frac{24 x+12}{12 x} .
$$

Now $\lim _{x \rightarrow-\infty}(24 x+12)=-\infty$ and $\lim _{x \rightarrow-\infty} 12 x=-\infty$, so again L'Hôpital's Rule applies:

$$
\lim _{x \rightarrow-\infty} \frac{24 x+12}{12 x}=\lim _{x \rightarrow-\infty} \frac{(24 x+12)^{\prime}}{(12 x)^{\prime}}=\lim _{x \rightarrow-\infty} \frac{24}{12}=2
$$

Solution C. In a polynomial, the term that dominates as $x \rightarrow-\infty$ is the term with the highest power of x. In the top polynomial, this term is $4 x^{3}$; in the bottom polynomial, this term is $2 x^{3}$. So,

$$
\lim _{x \rightarrow-\infty} \frac{4 x^{3}+6 x^{2}-2}{2 x^{3}-4 x+5}=\lim _{x \rightarrow-\infty} \frac{4 x^{3}}{2 x^{3}}=\lim _{x \rightarrow-\infty} 2=2
$$

3.4.22. Find $\lim _{x \rightarrow \infty} \cos (x)$ or show that the limit does not exist.

Solution. As x increases, the values of $\cos (x)$ never stop oscillating between 1 and -1 , so the function cannot approach any single value. Therefore, the limit does not exist.

