Math 2, Winter 2016

DAILY HOMEWORK #5 — SOLUTIONS

3.1.51. Find the absolute maximum and absolute minimum values of $f(x) = x + \frac{1}{x}$ on the interval [0.2, 4].

Solution. We can write $f(x) = x + x^{-1}$, so the derivative is

$$f'(x) = 1 - x^{-2} = 1 - \frac{1}{x^2}.$$

To find the critical numbers, we first set f'(x) = 0:

$$1 - \frac{1}{x^2} = 0;$$
 $1 = \frac{1}{x^2};$ $x^2 = 1;$ $x = 1 \text{ or } -1.$

So 1 and -1 are the numbers where f' is zero. We also find where f' is undefined: this happens for $x^2 = 0$, so x = 0. The numbers we have found are 1, 0, and -1; but 0 and -1 are not in the domain [0.2, 4], so 1 is the only critical number of f in [0.2, 4].

To find the (absolute) maximum and minimum, we test the critical points and the endpoints of the domain:

$$f(0.2) = 5.2;$$
 $f(1) = 2;$ $f(4) = 4.25.$

The highest of these values is 5.2, so the absolute maximum value is f(0.2) = 5.2. The lowest of these values is 2, so the absolute minimum value is f(1) = 2.

This is what f looks like:

3.1.53. Find the absolute maximum and absolute minimum values of $f(t) = t\sqrt{4-t^2}$ on the interval [-1,2].

Solution. We can write $f(t) = t (4 - t^2)^{1/2}$, and we can take the derivative using the product rule and the chain rule:

$$f'(t) = (t)' \cdot (4 - t^2)^{1/2} + t \cdot ((4 - t^2)^{1/2})'$$

= $1 \cdot (4 - t^2)^{1/2} + t \cdot \frac{1}{2}(4 - t^2)^{-1/2} \cdot (4 - t^2)'$
= $1 \cdot (4 - t^2)^{1/2} + t \cdot \frac{1}{2}(4 - t^2)^{-1/2} \cdot (-2t) = \sqrt{4 - t^2} - \frac{t^2}{\sqrt{4 - t^2}}$

To find the critical numbers, we first set f'(t) = 0:

$$\begin{split} \sqrt{4 - t^2} - \frac{t^2}{\sqrt{4 - t^2}} &= 0; \\ \sqrt{4 - t^2} &= \frac{t^2}{\sqrt{4 - t^2}}; \\ \times \sqrt{4 - t^2} &= \sqrt{4 - t^2}; \\ 4 - t^2 &= t^2 \\ 2t^2 &= 4 \quad \Rightarrow \quad t^2 = 2 \quad \Rightarrow \quad t = \pm \sqrt{2}. \end{split}$$

So $\sqrt{2}$ and $-\sqrt{2}$ are the numbers where f' is zero. But $-\sqrt{2} \approx -1.4$ is not in the domain [-1, 2], so the only critical number we care about is $\sqrt{2} \approx 1.4$, which is in [-1, 2].

We also find where f' is undefined. The $\sqrt{4-t^2}$ in the denominator is undefined when $4-t^2 \leq 0$, which happens whenever $t \leq -2$ or $t \geq 2$. The only such t in the domain [-1, 2] is t = 2, which we were already going to test because it is an endpoint.

To find the (absolute) maximum and minimum, we test the critical number $\sqrt{2}$ and the endpoints of the domain:

$$f(-1) = -\sqrt{3} \approx -1.7;$$
 $f(\sqrt{2}) = 2;$ $f(2) = 0.$

The highest of these values is 2, so the absolute maximum value is $f(\sqrt{2}) = 2$. The lowest of these values is $-\sqrt{3}$, so the absolute minimum value is $f(-1) = -\sqrt{3}$.

This is what f looks like:

3.4.10. Find $\lim_{x\to\infty} \frac{1-x^2}{x^3-x+1}$ or show that the limit does not exist.

Solution A.

$$\lim_{x \to \infty} \frac{1 - x^2}{x^3 - x + 1} = \lim_{x \to \infty} \frac{1/x^2}{1/x^2} \cdot \frac{1 - x^2}{x^3 - x + 1} = \lim_{x \to \infty} \frac{\frac{1}{x^2} - \frac{x^2}{x^2}}{\frac{x^3}{x^2} - \frac{x}{x^2} + \frac{1}{x^2}} = \lim_{x \to \infty} \frac{\frac{1}{x^2} - 1}{x - \frac{1}{x} + \frac{1}{x^2}}.$$

As $x \to \infty$, the top of this approaches 1 and the bottom approaches ∞ , so the whole fraction approaches 0. Therefore, the limit is 0.

Solution B. $\lim_{x \to \infty} (1 - x^2) = -\infty$ and $\lim_{x \to \infty} (x^3 - x + 1) = \infty$, so L'Hôpital's Rule applies:

$$\lim_{x \to \infty} \frac{1 - x^2}{x^3 - x + 1} = \lim_{x \to \infty} \frac{(1 - x^2)'}{(x^3 - x + 1)'} = \lim_{x \to \infty} \frac{-2x}{3x^2 - 1}$$

Now $\lim_{x\to\infty}(-2x) = -\infty$ and $\lim_{x\to\infty}(3x^2 - 1) = \infty$, so again L'Hôpital's Rule applies:

$$\lim_{x \to \infty} \frac{-2x}{3x^2 - 1} = \lim_{x \to \infty} \frac{(-2x)'}{(3x^2 - 1)'} = \lim_{x \to \infty} \frac{-2}{6x} = 0.$$

Solution C. In a polynomial, the term that dominates as $x \to \infty$ is the term with the highest power of x. In the top polynomial, this term is $-x^2$; in the bottom polynomial, this term is x^3 . So,

$$\lim_{x \to \infty} \frac{1 - x^2}{x^3 - x + 1} = \lim_{x \to \infty} \frac{-x^2}{x^3} = \lim_{x \to \infty} \frac{-1}{x} = 0.$$

3.4.12. Find $\lim_{x \to -\infty} \frac{4x^3 + 6x^2 - 2}{2x^3 - 4x + 5}$ or show that the limit does not exist. **Solution A.** $\lim_{x \to -\infty} \frac{4x^3 + 6x^2 - 2}{2x^3 - 4x + 5} =$ $= \lim_{x \to -\infty} \frac{1/x^3}{1/x^3} \cdot \frac{4x^3 + 6x^2 - 2}{2x^3 - 4x + 5} = \lim_{x \to -\infty} \frac{\frac{4x^3}{x^3} + \frac{6x^2}{x^3} - \frac{2}{x^3}}{\frac{2x^3}{x^3} - \frac{4x}{x^3} + \frac{5}{x^3}} = \lim_{x \to -\infty} \frac{4 + \frac{6}{x} - \frac{2}{x^3}}{2 - \frac{4}{x^2} + \frac{5}{x^3}}.$

As $x \to -\infty$, the top of this approaches 4 and the bottom approaches 2, so the whole fraction approaches 4/2 = 2. Therefore, the limit is 2.

Solution B. $\lim_{x\to-\infty} (4x^3 + 6x^2 - 2) = -\infty$ and $\lim_{x\to-\infty} (2x^3 - 4x + 5) = -\infty$, so L'Hôpital's Rule applies:

$$\lim_{x \to -\infty} \frac{4x^3 + 6x^2 - 2}{2x^3 - 4x + 5} = \lim_{x \to -\infty} \frac{(4x^3 + 6x^2 - 2)'}{(2x^3 - 4x + 5)'} = \lim_{x \to -\infty} \frac{12x^2 + 12x}{6x^2 - 4}$$

Now $\lim_{x \to -\infty} (12x^2 + 12x) = \infty$ and $\lim_{x \to -\infty} (6x^2 - 4) = \infty$, so again L'Hôpital's Rule applies:

$$\lim_{x \to -\infty} \frac{12x^2 + 12x}{6x^2 - 4} = \lim_{x \to -\infty} \frac{(12x^2 + 12x)'}{(6x^2 - 4)'} = \lim_{x \to -\infty} \frac{24x + 12}{12x}$$

Now $\lim_{x \to -\infty} (24x + 12) = -\infty$ and $\lim_{x \to -\infty} 12x = -\infty$, so again L'Hôpital's Rule applies:

$$\lim_{x \to -\infty} \frac{24x + 12}{12x} = \lim_{x \to -\infty} \frac{(24x + 12)'}{(12x)'} = \lim_{x \to -\infty} \frac{24}{12} = 2.$$

Solution C. In a polynomial, the term that dominates as $x \to -\infty$ is the term with the highest power of x. In the top polynomial, this term is $4x^3$; in the bottom polynomial, this term is $2x^3$. So,

$$\lim_{x \to -\infty} \frac{4x^3 + 6x^2 - 2}{2x^3 - 4x + 5} = \lim_{x \to -\infty} \frac{4x^3}{2x^3} = \lim_{x \to -\infty} 2 = 2.$$

3.4.22. Find $\lim_{x \to \infty} \cos(x)$ or show that the limit does not exist.

Solution. As x increases, the values of cos(x) never stop oscillating between 1 and -1, so the function cannot approach any single value. Therefore, the limit does not exist.