Math 2, Winter 2016

Daily Homework \#8 - Solutions

3.7.15. If $1200 \mathrm{~cm}^{2}$ of material is available to make a box with a square base and an open top, find the largest possible volume of the box.

Solution. Let s be the length of the side of the square base; let h be the height of the box; let V be the volume of the box. Then $V=h s^{2}$. We want to maximize V, so we need to write h in terms of s (or s in terms of h).

The surface area of the box is

$$
(\text { area of base })+4 \cdot(\text { area of one side })=s^{2}+4 h s
$$

so $1200=s^{2}+4 h s$. We can solve this equation for h in terms of $s:$

$$
4 h s=1200-s^{2} \quad \Rightarrow \quad h=\frac{1200-s^{2}}{4 s}
$$

Plugging this into the expression for V, we get $V=\frac{1200-s^{2}}{4 s} \cdot s^{2}=300 s-\frac{1}{4} s^{3}$. Therefore,

$$
V=300 s-\frac{1}{4} s^{3},
$$

and this is V as a function of one variable, s. What is its domain? The volume cannot be negative, which means $300 s-\frac{1}{4} s^{3} \geq 0$; solving this inequality for s yields $s \leq-20 \sqrt{3}$ or $0 \leq s \leq 20 \sqrt{3}$. But $s \geq 0$ rules out the possibility of $s \leq-20 \sqrt{3}$, so the condition is $0 \leq s \leq 20 \sqrt{3}$. Therefore, the domain is $[0,20 \sqrt{3}]$. (There are other ways of getting the righthand endpoint of this domain, or other reasonable choices of righthand endpoint.)

Now we need to find the absolute maximum of $V=300 s-\frac{1}{4} s^{3}$ on this domain. The derivative is $\frac{d V}{d s}=300-\frac{3}{4} s^{2}$, and this is never undefined, so we can find the critical numbers by setting it to zero:

$$
300-\frac{3}{4} s^{2}=0 \quad \Rightarrow \quad s^{2}=400 \quad \Rightarrow \quad s= \pm 20
$$

but -20 is not in the domain, so the only critical number is $s=20$.
Now we can use the "closed-interval method" to determine the absolute maximum of V. We test the critical number and the endpoints of the domain:

$$
V(0)=0 ; \quad V(20)=300 \cdot 20-\frac{1}{4} 20^{3}=4000 ; \quad V(20 \sqrt{3})=0
$$

The highest of these is $V(20)=4000$, so the absolute maximum is 4000 . Therefore, the largest possible volume is $4000 \mathrm{~cm}^{3}$. (This is achieved when the base side length is $s=20 \mathrm{~cm}$ and the height is $h=\frac{1200-20^{2}}{4 \cdot 20}=10 \mathrm{~cm}$.)

