Math 2, Winter 2016

Daily Homework \#9 - Solutions

3.3.13. (b) Find the local maximum and minimum values of $f(x)=\sin (x)+\cos (x)$ on the interval $[0,2 \pi]$.

Solution. We first find the critical numbers: $f^{\prime}(x)=\cos (x)-\sin (x)$, and since this is never undefined we just set it to zero:

$$
\cos (x)-\sin (x)=0 \Rightarrow \sin (x)=\cos (x) \quad \Rightarrow \quad \frac{\sin (x)}{\cos (x)}=1 \quad \Rightarrow \quad \tan (x)=1
$$

and on the domain $[0,2 \pi]$ this is satisfied when $x=\frac{\pi}{4}$ or $x=\frac{5 \pi}{4}$. Therefore, the critical numbers are $\frac{\pi}{4}$ and $\frac{5 \pi}{4}$.

We can use the second-derivative test to classify each critical number as a local minimum or a local maximum (unless the test is inconclusive). We have $f^{\prime \prime}(x)=-\sin (x)-\cos (x)$, so

$$
f^{\prime \prime}\left(\frac{\pi}{4}\right)=-\sin \left(\frac{\pi}{4}\right)-\cos \left(\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}=-\sqrt{2}<0
$$

and

$$
f^{\prime \prime}\left(\frac{5 \pi}{4}\right)=-\sin \left(\frac{5 \pi}{4}\right)-\cos \left(\frac{5 \pi}{4}\right)=\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}=\sqrt{2}>0 .
$$

So, by the second-derivative test, f has a local maximum at $\frac{\pi}{4}$ and a local minimum at $\frac{5 \pi}{4}$. The local maximum value is $f\left(\frac{\pi}{4}\right)=\sqrt{2}$, and the local minimum value is $f\left(\frac{5 \pi}{4}\right)=-\sqrt{2}$.
3.7.23. Find the dimensions of the rectangle of largest area that can be inscribed in a circle of radius r.

Solution. Let ℓ, w, and A be the length, width, and area respectively of the rectangle. Here is a diagram of the situation:

The diagonal of the rectangle is the diameter of the circle, so the length is $2 r$. Thus there is a right triangle with legs ℓ and w, and hypotenuse $2 r$. Then the Pythagorean Theorem tells us that $\ell^{2}+w^{2}=4 r^{2}$, so $\ell=\sqrt{4 r^{2}-w^{2}}$.

The area of the rectangle is $A=w \ell$, and that is what we need to maximize. Substituting $\ell=\sqrt{4 r^{2}-w^{2}}$, we get

$$
A=w \sqrt{4 r^{2}-w^{2}}
$$

Remember that r is a constant, so A is now a function of one variable, w. What is the domain? The width of the rectangle cannot be negative, and it cannot exceed the diameter $2 r$ of the circle; so $0 \leq w \leq 2 r$, and the domain is the closed interval [$0,2 r]$.

The derivative (remembering that r is a constant) is:

$$
\begin{aligned}
\frac{d A}{d w} & =\frac{d}{d w}(w) \cdot \sqrt{4 r^{2}-w^{2}}+w \cdot \frac{d}{d w}\left(\sqrt{4 r^{2}-w^{2}}\right) \\
& =\sqrt{4 r^{2}-w^{2}}+w \cdot \frac{1}{2 \sqrt{4 r^{2}-w^{2}}} \cdot \frac{d}{d w}\left(4 r^{2}-w^{2}\right) \\
& =\sqrt{4 r^{2}-w^{2}}+w \cdot \frac{1}{2 \sqrt{4 r^{2}-w^{2}}} \cdot(-2 w) \\
& =\sqrt{4 r^{2}-w^{2}}-\frac{w^{2}}{\sqrt{4 r^{2}-w^{2}}}
\end{aligned}
$$

There is one number in the domain $[0,2 r]$ where this is undefined, and that is $w=2 r$; but that is an endpoint of the domain, so we won't count it as a critical number. Now we set the derivative to zero:

$$
\begin{aligned}
\sqrt{4 r^{2}-w^{2}}-\frac{w^{2}}{\sqrt{4 r^{2}-w^{2}}} & =0 ; \\
\sqrt{4 r^{2}-w^{2}} & =\frac{w^{2}}{\sqrt{4 r^{2}-w^{2}}} ; \\
\times \sqrt{4 r^{2}-w^{2}} & \times \sqrt{4 r^{2}-w^{2}} \\
4 r^{2}-w^{2} & =w^{2} ; \\
w^{2} & =2 r^{2} ; \\
w & = \pm \sqrt{2} \cdot r .
\end{aligned}
$$

We throw out the negative solution because it is not in the domain, so $w=\sqrt{2} \cdot r$ is the only critical number (and it is in the domain).

Now we can use the closed-interval method to find the absolute maximum. We test the critical number and the endpoints in the original function A :

$$
A(0)=0 ; \quad A(\sqrt{2} \cdot r)=2 r^{2} ; \quad A(2 r)=0
$$

The highest of these values is $\sqrt{2} \cdot r$. Therefore, the absolute maximum area occurs when the width is $w=\sqrt{2} \cdot r$, and the length is $\ell=\sqrt{4 r^{2}-w^{2}}=\sqrt{2} \cdot r$. This means the area is maximized when the rectangle is a square!
2.8.4. The length of a rectangle is increasing at a rate of $8 \mathrm{~cm} / \mathrm{s}$, and its width is increasing at a rate of $3 \mathrm{~cm} / \mathrm{s}$. When the length is 20 cm and the width is 10 cm , how fast is the area of the rectangle increasing?

Solution. Let ℓ be the length, w the width, and A the area. Then $A=\ell w$. To take the derivative of this, we need to use the product rule:

$$
A^{\prime}=\ell^{\prime} w+\ell w^{\prime}
$$

We are given that $\ell=20, w=10, \ell^{\prime}=8$, and $w^{\prime}=3$. Plugging this in yields

$$
A^{\prime}=8 \cdot 10+20 \cdot 3=140
$$

Therefore, the area grows at a rate of $140 \mathrm{~cm}^{2} / \mathrm{s}$.
2.8.5. A cylindrical tank with radius 5 m is being filled with water at a rate of $3 \mathrm{~m}^{3} / \mathrm{min}$. How fast is the height of the water increasing?

Solution. Let h be the height of the water, and let V be the volume of the water. The water is a cylinder whose base is the base of the tank, so it has radius $r=5$, and so

$$
V=\pi r^{2} h=25 \pi h
$$

(We can plug in $r=5$ now because the radius is constant over time, so we don't have to wait until after we take the derivative.) Now the derivative is

$$
V^{\prime}=25 \pi h^{\prime} ;
$$

and we are given that $V^{\prime}=3$, so $3=25 \pi h^{\prime}$, and $h^{\prime}=\frac{3}{25 \pi} \approx 0.038 \mathrm{~m} / \mathrm{s}$.
2.8.9. If $x^{2}+y^{2}+z^{2}=9, \frac{d x}{d t}=5$, and $\frac{d y}{d t}=4$, find $\frac{d z}{d t}$ when $(x, y, z)=(2,2,1)$.

Solution. We take the relation $x^{2}+y^{2}+z^{2}=9$ and implicitly differentiate, yielding

$$
2 x \frac{d x}{d t}+2 y \frac{d y}{d t}+2 z \frac{d z}{d t}=0 .
$$

Now we just plug in the given information:

$$
2 \cdot 2 \cdot 5+2 \cdot 2 \cdot 4+2 \cdot 1 \cdot \frac{d z}{d t}=0 \quad \Rightarrow \quad 36+2 \frac{d z}{d t}=0 \quad \Rightarrow \quad \frac{d z}{d t}=-18
$$

