Prove or disprove: If every vertex of a simple graph G has degree 2 , then G is a cycle.

This is not true, because here is a counter-example. There is no path between vertices u and v.

However, if the graph is connected, and each vertex has degree 2, then G is a cycle.
This is true, whenever the graph has a vertex v and the whole graph is a path from v to itself that goes through all the edges, and that touches every vertex only once.
since the graph is connected, there is, for every pair of vertices $\{u, v\}$, a path from u to v_{0} Call this path P, and make a copy of G without the edges of P.
In that copy, take the vertex that is next to u and call it u^{\prime}. Do the same with the vertex next to v and call it v^{\prime}. We know they exist, since u and v have degree 2 . Since the graph G is connected, there exists a path between u^{\prime} and v^{\prime}.
The path that goes from u to $v+$ the edge $v v^{\prime}+$ the path from v^{\prime} to $u^{\prime}+$ the edge $u^{\prime} u$ is a cycle.

The proof that if G is connected and every vertex has degree 2 , it is a cycle can also be done very easily by induction, with base case the complete graph with three vertices.

