1.2.20 Let $v$ be a cut-vertex of a simple graph $G$. Prove that $\bar{G}-v$ is connected.

If $G$ is disconnected, then its complement is
 connected (by homework 1). Also, $\bar{G}-v$ is connected if $v$ is not an isolated vertex, because all the vertices in its components are connected to all the vertices in the other components. v cannot be an isolated vertex, since it is a cut-vertex.

If $G$ is connected, $G-v$ is disconnected, since $v$ is a cutvertex. That means that the complement of $G-v$ is connected. However, $\overline{G-v}=\bar{G}-v$. This is because an edge uv will disappear from $G$ and its complement after removing $v$, and an edge uv with $u$ and $w$ not equal to $v$ will not be impacted by removing $v$. This proves that $\bar{G}-v$ is connected.

