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Recall from the very first lecture the following problem:

Scheduling and avoiding conflicts

My high school used fo have a very long exam sessions af fhe end of
The year, and fhere were still some contlicts, I wish fthe administrators
knew graph theory..

VerTices: Subjects
Edges: If someone fakes both subjects,

(@)
/Q N /et 1se- evertual scheduling conflicts.

ol ) Intuifive definition:
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Scheduling

with no conflicts is equivalent fo coloring.
1f we want fo use the minimum Time, we
should use as few colors as possible,

Definition

A k—coloring of a graph 6 is a labeling of the vertices using labels
from a set of size k (called colors, even Though the labels can be
numbers, for example)., -

The vertices of one color form a color class,

A coloring is proper it no fwo adjacent vertices have the same label,
A graph is k—colorable if it has a proper k—coloring,
The chromatic number x(6) is the least k such that 6 is k—colorable,

In a proper coloring, every color class is an independent set, The
chromatic number is The smallest number of independent sets in a

graph,



Example @

The Petersen graph has chromalic number 3:

— It is not 2—colorable, because ifs vertices cannot be divided into
fwo independent setfs; it would otherwise be biparfite,

— It is 3—colorable, as shown on the right,

Notice that the chromatic number is an extremal problem:
we need fTo show it is minimal and that a proper coloring
exists,

Colorings for non—simple graphs

Graphs with loops do not admit proper colorings: a verfex that is
incident to a loop could not be colored.

Every loopless graph can be colored: a trivial coloring where every
verfex has a distinet color would work,

Multiple edges

Mulfiple edges don't change anything to colorings, as fwo adjacent
vertices cannot be colored regardless of the number of edges between
Them,

OpTtimality
A graph G is k—chromatic it k=x(G); a proper k—coloring is Then an
opfimal coloring.

It x(H)<x(6)-k for every subgraph H of G, then 6 is k—critical or
color—crifical,

Examples

k=1 k=3: The 3—crifical graphs are the A M
smallest graphs that are wnot biparfite: Not 3—
k=2 o fhese are the odd cucles, N, oritical
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No general characterization of 4—crifical is known, ®

First bounds on the chromatic number

The cligue number of a graph, wriffen w(G), is the maximum size of a
cligue in G, (Recall that a clique is a complete subgraph).

Also, vecall that the independence wnumber, a(G), is the size of a
maximum independent sef,

Proposition
For every graph G=(V,E), x(6)=w(G) and x(G6)=IVI/a(aG).

Proof

It there is a cligue of size k, the k vertices in the cligue must be of
different colors.,

For the second inequality, rewrife it as x(6)a(G)=IVI, x(G) is the
number of color classes, and a(G) is The maximum size of a color class,

®

The chromafic number is not necessarily the size of fhe maximal cligue:
< 2 Maximal cligue has size 2
Chromatic number is 3
Greedy coloring algorithm

— Ovder the vertices 11,2,.,nt.
1,2 ,.,0,

— For every verfex (in order), label it with the smallest color not
already in use in ifs neighborhood,

We will color the vertices using numbers

Example
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In This case, it is
actually minimal, This

graph cannot be colored m
with fewer than 4 colors, : /
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1t is not always the case:
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Proposition
The chromatic number is at most A(G)+1.

Proot

The greedy algorithm described above yields a proper coloring, In the
worst case, all neighbors ot one verfex have distinct color, and we
must add a color, When this happens, the number of colors is one
more Than the number of neighbors; that is af most A(G)+1,

Reference: Douglas B, West, Introduction to graph theory, 2nd edition, 2001,
Section 5.1,



