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Last class, I infroduced proper colorings ot graphs, and fhe chromatic
number, We also looked at some bounds on the chromafic number,
and we keep exploring bounds on the chromatic number foday,

So far, we know:

— The chromatic number can be bounded in ferms of the independence
number and the cligue number: x(6)z=w(6) and x(6)=<IVI/a(G).

— The chromatic number can be bounded in terms of the maximum
degree: x (6)<A(G)+1,

These bounds are easy to check, bul they are not the best possible,

Another upper bound

Theorem (Brooks, 1941)
1t 6 is connected, and is not the complete graph nor an odd cycle,
x(G)=A(aG).

Examples and special cases
¥ A(G)=0, then G has 1 verfex (because iT is connected), and is Thus

the complefe graph. So no graph in this case safisfies the hypotheses
of the theorem,

It A(G)=1, then G has 2 vertices, and This is again the complete graph,

1t A(G)-2, G is either a cycle or a path, Open paths and even cycles
are biparfite, so Their chromatic number is 2, which also is The maximum
degree, Even cycles are excluded from fhe hypothesis of fhe theorem.

Complete graphs don't safisty the inequality, as their chromatic number
is one more Than the maximum degree (every verfex must have
different colors).



The hypothesis That fthe graph is connected is needed fo avoid the (@
case of having only isolated vertices,

) . Not complefe, maximum degree is o,
Chromatic number is 1,

Notice that, whenever a graph with n verfices is not the complete
graph, the chromafic number is at most n—1: Since there is at least
one pair of non—adjacent verfices in a non—complete graph, they
can be the same colors, So n colors are never needed if the graph
is not complefe,

Example: Coloring the Pefersen graph using the greedy algorithm

The Pefersen graph is 3—reqular,

It safisfies the hypothesis of the fheorem,

so it must have maximum degree 3, That
means There exists an ordering of the verfices
That allows it,

Proof of Brooks' Theorem
We already inspected the case where the largest degree is al most 2,
so assume A(G)=k is al least 3,

1t 6 is not k—vreqular:

Then, there is a verfex v with degree less than k, Let T be a

spanning fTree in G (which is possible since the graph is connected).,

We will use this spanning free tor ordering the vertices. The goal is

fo find the right ordering for the vertices, and then apply the greedy

algorithm from last lecture.

— Number vertex v with n (last vertex To be colored).

— Label the other vertices in decreasing order on paths leaving v in
T,

— Color the verfices using the greedy algorithm from last lecture,

Every Time we color a new verfex u (that is not v), there are at most

k=1 of s neighbors thal have been previously colored, so k colors are

enough,



For the last step, we know that v has at most k—1 neighbors, so in ®
the worst case, a k=th color will be necessary to color it,
In tofal, k colors are enough if the graph is not k—reqular,
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A similar process holds if fhe graph is k—veqular, buf fhere are two

cases:

— There is a cut—verfex v. Then, G6—1v} is disconnected, and each
component can be colored with k colors, Place the colors in the
components so that every verfex incident fo v has the same color,
Then, v can be colored using any other color, so G is k—colorable,
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— There is no cut—verfex, meaning that 6 is 2—connected,
It 6 has a verfex v with fwo neighbors thal are not adjacent v
m and n such that G6—im,ni is connected, we can use a AN
similar argument, We label m and n by 1 and 2, and create a roedae
spanning tree in G—im,ni. Starfing from v, we label the vertices in
decreasing order and obtain a proper k—coloring of G because the
last vertex has fwo vertices (m and n) colored the same.
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1 claim there is always such a friple of vertices when G is 2—connected

and k—veqular, with k=3, (The defails of this are in the fextbook.) o

Subgraph, cligues and chromatic number

Proposition
It H is a subgraph of G, x(H)=x(6).

Proot
All the edges of H are in G, so the verfices of H cannot be colored

with fewer than x(H) vertices (however, it we add edges, fhey might
need more colors).

This is similar To the proposition we had in last lecture: x(6)=w(6).
However, cligues are not needed to have large chromatic number,

Example: Mycielski's construction

From a simple graph G, construct a graph 6' in the following way:
Let H and H' be two copies of G, but delefe all edges from H', If
vertices u and v are adjacent in G, draw an edge between u in H and

v' in H' (the copy of v in H'). Add an extra verfex x and connect it
fo all the vertices in H',

3 H

G H
7 ~ G
M ==

Notice that u and u' are never adjacent,

1t G has chromatic number k, fhen G' has chromatic number k+1:

The colors in H and in H' can be fhe same., In G, u and v can have
the same color if they are not adjacent, Hence, u and v' (as well as
v and u') are nof adjacent in 6", so they can have the same color,
Hence x is the only vertex with a new color added,
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So graphs obtained by iferating this process can have arbitraty large
chromaTic number,

Question: What is the cligue number of a graph obtained with the
Mycielski's contruction?

Proposition
Every k—chromatic graph with n verfices has at least m edges

Proot

Consider an opfimal coloring of the graph., Since it uses The minimum
number of colors, there is at least one edge connecting fwo color
classes; ofherwise, there are two classes (blue and red) with no edges
between the two classes, and all the red verfices can be colored blue,
Hence, we need at least one edge per pair of colors, that is (%)
edges.

This is achieved by complete graphs K, plus n—k isolated verfices,
&

Reference: Douglas B, West, Introduction to graph theory, 2nd edition, 2001,
Sections 5.1 and 5.2



