5.3.18 Compute the chromatic polynomial of these 2 graphs.

1 - Show they have the same chromatic polynomial.

They are not isomorphic, because only one has a vertex of degree 2.

However, using contraction deletion with different edges, we get the two same graphs:

$$
x(\sqrt[\nabla]{\nabla} ; k)-x(\nabla ; k)
$$

$$
x(\sqrt{\nabla} ; k)-x(\otimes ; k)
$$

So they have the same chromatic polynomial.

2- Compute the chromatic polynomial of any of these two graphs.

Observation
The deletion-contraction recurrence for the chromatic polynomial implies the following:

$$
\chi(G)=\chi(G-e)-\chi\left(G_{0} e\right) \Rightarrow \chi(G-e)=\chi(G)+\chi\left(G_{0} e\right)
$$

Applying it to this problem, we add the light blue (vertical) edge.

It has a simplicial elimination ordering d, e, c, b, f, a.

a	f	b	c	e	d
0	1	2	3	2	3

$$
x(G ; k)=k(k-1)(k-2)^{2}(k-3)^{2}
$$

It has a simplicial elimination ordering d, e, c, b, a.

$$
\begin{array}{ccccc}
a & b & c & d & e \\
0 & 1 & 2 & 1 & 2 \\
\chi(G . e ; k)=k(k-1)^{2}(k-2)^{2}
\end{array}
$$

$$
x(G-e ; k)=k(k-1)(k-2)^{2}\left((k-3)^{2}+(k-1)\right)
$$

Ge

And that gives the chromatic polynomial of the two graphs above.

