5.3.18 Compute the chromatic polynomial of these 2 graphs.

1 - Show they have the same chromatic polynomial.

They are not isomorphic, because only one has a vertex of degree 2.

However, using contraction deletion with different edges, we get the two same graphs:

So they have the same chromatic polynomial.

2 - Compute the chromatic polynomial of any of these two graphs.

Observation

The deletion-contraction recurrence for the chromatic polynomial implies the following:

$$\chi(G) = \chi(G-e) - \chi(G.e) = \chi(G-e) = \chi(G) + \chi(G.e)$$

Applying it to this problem, we add the light blue (vertical) edge.

It has a simplicial elimination orderng d,e,c,b,f,a.

$$\alpha$$
 f b c e d
 α 1 z 3 z 3
 $\chi(G; k) = k(k-1)(k-2)^2(k-3)^2$

It has a simplicial elimination orderng d,e,c,b,a.

$$\chi(G.e;k)=k(k-1)^{2}(k-2)^{2}$$

$$\chi(G-e;k)=k(k-1)(k-2)^2((k-3)^2+(k-1))$$

And that gives the chromatic polynomial of the two graphs above.