Coloring on surfaces, in general

The genus of an orientable surface is its number of handles.

Genus 3

The plane and the sphere have genus o

A graph is embeddable on a surface if it can be drawn on it without edges crossing.

A planar graph is embeddable on a plane.

Theorem

An orientable surface with genus g has Euler's characteristic 2-2g. That implies a graph 6 with n vertices and e edges that is embedddable on a surface of genus g satisfies n-e+f=2-2g, where f is the number of faces.

Seven color Theorem

Theorem

If G is embeddable on a torus (genus 1), then G is 7-colorable.

Proof

We know, by Euler's formula for the torus, that n-e+f=0. We also know that 2e=(sum of the length of the faces) ≥ 3f. This means that 3n-3e+3f=0 (or 3n-3e=-3f, so $3n-3e \ge -2e$, and $3n\ge e$).

Thus, there needs to be a vertex with degree at most 6 for every graph that is embeddable on a torus.

This implies that every subgraph of 6 has a vertex of degree at most 6.

Using the lemma from the lecture notes (in the section for the Six Color Theorem), that means that G is 7-colorable.

Theorem

There exist some graphs that are embeddable on the torus that have chromatic number 7.

Proof

K7 can be embedded on the torus, as shown below. As every complete graph, its chromatic number is its number of vertices.

Source of the picture: Maproom, on Wikipedia