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Abstract

Despite its apparent similarity to the (easily-computable) determinant, it is believed that there is
no polynomial-time algorithm for computing the permanent of an arbitrary matrix. In this survey, we
review the known approaches for efficiently estimating the permanent and discuss their relative merits
and limits. Emphasis is placed on the most successful approach to date, which is based on random
sampling via Markov chains. In particular, we review the historical developments that lead to a result of
Jerrum, Sinclair, and Vigoda, which states that the permanent of an arbitrary matrix with non-negative
entries can be approximated in polynomial time. We describe a number of techniques that were developed
for this specific problem and have since been generalized to become standard techniques in the area.

We assume some familiarity with complexity classes (such as P and NP), as well as a rudimentary
understanding of Markov chains.

1 Introduction

The permanent of an n x n matrix A is defined as

per(A) = Z Haw(i)7

ceS, i=1

where S,, denotes the symmetric group on n elements, i.e., permutations of {1,...,n}.

We will be particularly interested in the case when the input A is a 0-1 matrix, as this case captures
(nearly) all the difficulty of the problem and has a nice combinatorial characterization. Any such matrix
A corresponds to a bipartite graph G with vertex set U UV, where U and V correspond to the rows and
columns of A, respectively, and thus U =V = {1,2,...,n}. The edge set E(G) contains exactly those edges
{u,v} such that a,, = 1. Recall that a perfect matching is a set of edges, no two incident on the same vertex,
such that every vertex in G is incident on some edge in the matching. In our context, such collections of
edges can be viewed as permutations o € S, hence the perfect matchings of G are exactly those monomials
of per(A) that are not annihilated. Thus we see that evaluating the permanent of a 0-1 matrix is equivalent
to counting the number of perfect matchings in a bipartite graph.

So how difficult is this quantity to compute?

Counting problems and #P.

Theorem 1 (Valiant’s Theorem [30]). The problem of evaluating the permanent of an arbitrary 0-1 matric
is #P-complete.

Informally, #P is the class of counting problems associated with decision problems in NP. For exam-
ple, the #P-complete counting problem #SAT is to determine the number of satisfying assignments for a
Boolean formula given in CNF. Clearly, this problem is no easier than determining whether the formula has
any satisfying assignment, which is the canonical NP-complete problem SAT. It follows that there is no
deterministic, polynomial-time algorithm for computing the permanent of a 0-1 matrix unless P = NP.
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Determinants and the dimer model. Polynomial-time algorithms are known for some special classes
of graphs. In particular, motivated by an application in statistical physics known as the dimer model,
Kasteleyn [18] showed that per(A4) can be computed in O(n?) time if A is a 0-1 matrix whose associated
graph is planar. Kasteleyn’s method is one of many that attempt to exploit the close relationship between
the permanent and the determinant. Recall that the determinant of an n x n matrix A is defined as

det(A) = Z sgn(o) Haia(i).

oES,

The determinant of an arbitrary matrix can be computed in O(n?) time using methods such as Gaussian
elimination. Kasteleyn’s idea was to change some of the 1’s in A to —1’s, thus forming a matrix B with the
property that per(A) = det(B). It has since been shown [23] that the planar bipartite graphs are part of a
larger class of graphs (those that admit a Pfaffian orientation) for which the permanent can be computed
in this way.

Given Valiant’s Theorem above, it should not be surprising that no such reduction to the determinant
has been discovered for arbitrary 0-1 matrices. It is believed that there is no way to express the permanent
of an arbitrary matrix A as the determinant of some matrix whose size is polynomial in that of A.!

2 Approximating the permanent

Consider again the problem #SAT mentioned above. A polynomial-time algorithm for this problem seems
far out of reach. Moreover, it is apparent that any algorithm that finds even an approzimate solution
(accurate within any fixed e > 0) to this problem could be adapted to solve the original SAT problem, which
is NP-complete. In contrast, though the 0-1 permanent is also #P-complete, a result of Edmonds [10] says
that the corresponding decision variant can be solved (and a perfect matching constructed, if one exists) in
polynomial time. This property is key, as it allows for the possibility of efficient approximation. We now
make this notion more precise. Our hope is to obtain an algorithm that, given an n x n matrix A and real
numbers € > 0, § € (0,1), can produce an estimate OUT of per(A) such that

Pr[(1 —e€)per(A) <OUT < (1+¢€)per(4)] >1—06.

Such a scheme is called a fully-polynomial randomized approzimation scheme (FPRAS) for per(A) if it runs
in time poly(n, e~ !,logd~!). Unfortunately, the following result implies that, under a complexity-theoretic
assumption similar to P # NP2, no such procedure exists.

Theorem 2 (Random-self-reducibility of the permanent [19, 7, 14]). If there exists a FPRAS for the per-
manent of an arbitrary matriz, then there exists a randomized polynomial-time algorithm for computing the
permanent of an arbitrary matriz exactly.

However, it turns out that the restricted case of 0-1 matrices fails to capture the hardness of efficient
approximation as it did for efficient (exact) evaluation.

Theorem 3 (Jerrum, Sinclair, and Vigoda [14]). There exists a FPRAS for the permanent of an arbitrary
matriz with nonnegative entries.

This celebrated result is the culmination of a line of work on approximating permanents using Markov
chain Monte Carlo (MCMC), and relies on a fairly sophisticated method of mixing time analysis. In sub-
sequent sections, we discuss this and earlier approaches based on MCMC. All of these approaches use more
or less the same Markov chain, which is fairly simple to define and yet has proved very difficult to analyze.
The sophisticated techniques developed for this particular problem have seen wide applicability on other
problems.

First, we briefly discuss an approach that is not based on MCMC. This approach has some potential, but
has not yet yielded a FPRAS for 0-1 permanents.

1 Note that this is precisely Valiant’s Hypothesis [29] VP # VNP, where VP and VNP are algebraic analogues of P and NP.
2 specifically, the assumption that P#P ¢ BPP
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The Godsil-Gutman approach. The Godsil-Gutman approach is a randomized determinant-based ap-
proach to approximating the permanent of a 0-1 matrix A. The idea is to construct a matrix B by setting

b — )% with probability
Y —a;; with probability

N[= N[

for each i,j (independently). Then the random variable b = |det(B)|? satisfies
E [b] = per(4),

and an estimate of per(A) is obtained as the average of a collection of samples of b. Unfortunately, the
efficiency of this method depends on the variance of b, and the number of such samples required to achieve
the desired bounds is O(1.7™) in this case. A similar technique was used by Karmarkar et al. [17]; their
method constructs B by multiplying with random complex numbers and requires O(1.4") samples. Later,
Chien, Rasmussen, and Sinclair [9] used a further generalization (specifically, quaternions) in a method that
requires O(1.2") samples. It is not clear whether a variant of the Godsil-Gutman approach will eventually
yield a FPRAS for 0-1 permanents; this is the subject of some recent work [1, 8].

3 Counting via almost uniform sampling

In 1986, Broder published a seminal paper [5] in which he outlined a method for efficient approximation of
certain 0-1 permanents. Broder’s overall approach—based on random sampling from the stationary distri-
bution of a Markov chain—ultimately proved to be the basis of the result by Jerrum, Sinclair, and Vigoda
mentioned in the previous section. Importantly, Broder’s paper also called attention to those complications
that stood in the way of generalizing the framework. We now treat each of these contributions in turn.

Broder’s first insight was to reduce the approximate counting counting problem (i.e., the existence of a
FPRAS) to (almost) uniform random sampling.® Such reductions have since become standard, and much
is now known about the close relationship between counting and sampling problems. The key is exploit a
property known as self-reducibility [24, 25]; rather than giving the (somewhat technical) definition of this
property, we illustrate its relevance for the problem under consideration. (Note that this notion is distinct
from that of random-self-reducibility discussed above).

Consider the interpretation of the 0-1 permanent as counting perfect matchings in a bipartite graph G.
Let M;(G) denote the set {M C E(G): |M| = i}, so that the quantity we wish to estimate is | M, (G)].
As noted above, we may assume (or rather, we can confirm in polynomial time) that M, (G) is nonempty,
and thus |U| = |V| = n. However, |M,,(G)| could easily be exponential in n, and so it is not at all obvious
how poly(n) samples from the set M,,(G) could be used to give a reliable estimation of its size. Broder’s
clever insight was to estimate each of the ratios My (G)/Mjy—_1(G) by sampling uniformly from the sets
Mi(G)U Mp_1(G) for all k =1,...,n, followed by evaluating the telescoping product

MO = @] ™ M@ < Moty < Ml

where M(G) denotes the set of empty matchings, of which there are exactly one. In fact, it is enough that
the sampling is close enough to uniform; we make this notion more precise later in this section. However,
(almost) uniform sampling from M (G) U Mj_1(G) will lead to a sufficiently accurate estimate of the ratio
My(G)/My—1(G) only if My_1(G)/My(G) is bounded by poly(n). Unfortunately, simple examples show
that the following is true.

Obstruction 1 (Broder’s observation [5]). There exist bipartite graphs G for which the ratio
IMu—1(G)|/ IMn(G)]| is arbitrarily large.

3 Jerrum, Valiant, and Vazirani [16] developed contemporaneously (but independently) a similar but far more general
framework for relating counting to sampling, describing very general conditions—requiring self-reducibility in particular—under
which the two are polynomially equivalent.
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Dense graphs. Broder’s approach is feasible for a particular class of bipartite graphs. We say that a
bipartite graph is dense if the degree of every vertex is greater than n/2. It can be shown that every
dense bipartite graph G satisfies |[M,,_1(G)| / |M,,(G)| < n?. However, the standard approach to evaluating
IMp(@)| /I Mg-1(G)| for k < n would be to evaluate |M,,(G")| / |Mn-1(G")| for some subgraph G’ of G
(obtained, for example, by removing some vertices from G). This is a problem, as G’ is not guaranteed to
be dense. Broder skirted this problem with a clever construction involving supergraphs of G, rather than
subgraphs. A thorough description of this construction appears in Sinclair’s book [26].

Almost uniform sampling. We implicitly assumed in the above discussion that the ratios Mg (G)/ My_1(G)
were being estimated by drawing a sequence of samples. In other words, we assumed the existence of a pro-
cedure that, given the graph G and a number k € {1,...,n}, could produce samples drawn uniformly at
random from the finite state space @ = My(G) U My_1(G). In practice, however, we will likely not be
able to determine exactly the desired uniform distribution 7, which assigns an equal 1/ || probability to
every element in 2, as |Q] is precisely the quantity we want to compute. Fortunately, we find that it is good
enough to sample from a distribution p on € that is close to 7 in terms of the total variation distance

dev (1, ) = %Z i = mi] = max s = s.
1€
It particular, Broder showed that it suffices to construct a procedure that, given an input ¢ € (0,1] in
addition to G and k, can generate samples from a distribution g on Q such that diy (u, 7) < e. We call such
a procedure a fully-polynomial almost uniform sampler (FPAUS) if it runs in time poly(n,loge™1).
In summary, we have the following.

Theorem 4 (Broder [5]). Let A be an arbitrary dense 0-1 matriz of size n x n. If there exists a FPAUS for
M, (G) U M,,_1(G), then there exists a FPRAS for |M,,(G)|.

Because this result hints at the possibility of a FPRAS for dense bipartite graphs, it is natural to ask
whether the problem remains #P-complete under this restriction (for if the problem were easily solvable on
this subclass, then this result would shed no light on the possibility of a FPRAS for the unrestricted case);
Broder showed that this is indeed the case.

4 A FPAUS for dense graphs via MCMC

The crux of Broder’s approach is a method for obtaining a FPAUS that is based on Markov chain Monte
Carlo. Recall that any ergodic Markov chain on a finite state space €2 is uniquely defined by its || x |Q]
transition matrix P and will converge to its (unique) stationary distribution 7 in finite time. The rate at
which such a chain converges to 7 is measured by the mizing time

7(e) = max7(e),
where
7i(€) = min{t € N: dy(PL,7) < eforall ¥ >t}
It follows that a Markov chain with state space Q = My (G) U Mj_1(G) will constitute the desired FPAUS
if its mixing time is bounded by poly(n,loge~!). Broder constructed such a chain, and provided a proof of

rapid mixing that was based on a coupling arguments. However, a fundamental flaw in Broder’s proof was
discovered in 1987 by Mihail.

Obstruction 2 (Mihail’s observation [20, 6, 21]). The natural Markov chains for perfect matchings
in dense bipartite graphs (such as that of Broder [5] and the similar one proposed by Jerrum and
Sinclair [13]) display a high degree of asymmetry which makes them unwieldy with respect to coupling
arguments.

Jerrum and Sinclair filled this gap the following year.

Theorem 5 (Jerrum and Sinclair [13]). There exists a FPRAS for the number of perfect matchings in an
arbitrary dense bipartite graph.

In the remainder of this section, we describe the proof of this theorem.
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Proving rapid mixing for dense bipartite graphs via conductance. Jerrum and Sinclair used a
Markov chain (described below) that was almost identical to Broder’s, but the techniques they used to prove
rapid mixing were entirely new. In a companion paper [28] they introduced a general technique for bounding
the mixing time of an ergodic, reversible Markov chain. Recall that a Markov chain is reversible if and only
if it satisfies the “detailed balance” equation

7TZ'PZ‘J‘ = 7Tiji = wij. (1)

The symmetry of the detailed balance equation (1) gives rise to a natural notion of an underlying undirected
graph H with weights w;; = wj; associated with each undirected edge {i,j} € E(H). The conductance of
an ergodic, reversible Markov chain is defined by
. . Wi s
®(H) = min Liesjes Vi
ies T

where the min is taken over all S C 2 such that 0 < Ei es i < % The intuition behind conductance similar
to that behind similar notions such as graph expansion: the chain will exhibit rapid mixing if there are no
significant bottlenecks, i.e., it is difficult for a random walk in H to get stuck in a particular subset S of the
vertices. More precisely, we have the following result.

Theorem 6 (Sinclair and Jerrum [28]). If H is the underlying undirected graph of an ergodic, reversible

.o . . 1
Markov chain in which minecq Py > 5, then

2 1

7(e) < S(H? (Inm_

+1Inet),

min
where Tmin = Min;cq ;.

It follows that a bound of the form ®(H) > 1/ poly(n) suffices to demonstrate rapid mixing in the Markov
chain corresponding to H.

Proving bounds on conductance via canonical paths. We now describe the Markov chain used by
Jerrum and Sinclair. the transitions are specified as follows (put plainly, we simply pick an edge from G at
random and do whatever we can with it without disturbing more than one of the edges in the matching).
From any state M € § pick an edge {u,v} € E(G) uniformly at random and then

(i) If M € M, (G) and {u,v} € M, move to state M’ = M — {u, v};
(ii) If M € M,,_1(G) and both w and v are unmatched in M, move to state M’ = M + {u,v};

(i) If M € M, _1(G), u is matched to some w in M and v is unmatched in M, move to M’ = M + {u, v} —
{u,w} (and the symmetric analogue when u is unmatched and v is matched);

(iv) In all other cases, do nothing.

Finally, an additional self-loop transition with probability % is added for every state in the chain in order
to satisfy the conditions of Theorem 6. Jerrum and Sinclair managed to show that the underlying graph H
satisfies ®(H) > 1/12n% by the use of a method known as canonical paths. The idea is to describe a kind
of flow on H between every pair ¢,j of states by defining paths ~;; in H for every such pair. Once these
paths are defined, a general upper bound of 3n*|M,,_1(G)| is obtained on the number of canonical paths
traversing any particular edge in H. The interested reader should consult the thorough exposition of this
proof in Sinclair’s book [26].

5 Extension to general nonnegative matrices

In this final section, we briefly mention the ways in which the abovementioned work of Broder, Jerrum,
and Sinclair has bee extended and improved. We saw that the obstruction noted by Mihail, which pointed
out the dificulty of proving rapid mixing by coupling arguments, was circumvented by the application of
arguments based on conductance. But Broder’s obstruction, which necessitated the restriction to dense
graphs, remained until the following result was obtained.
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Theorem 7 (Jerrum, Sinclair, and Vigoda [14]). There exists a FPRAS for the number of perfect matchings
in an arbitrary bipartite graph.

The algorithm devised for the proof of this theorem runs in O(n'°log®n) time; this was later improved
to O(n log* n) time [4].
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