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Abstract. We analyze and solve a game in which a player chooses which of several Markov
chains to advance, with the object of minimizing the expected time (or cost) for one of the chains
to reach a target state. The solution entails computing (in polynomial time) a function γ—a variety
of “Gittins index”—on the states of the individual chains, the minimization of which produces an
optimal strategy.

It turns out that γ is a useful cousin of the expected hitting time of a Markov chain but is
defined, for example, even for random walks on infinite graphs. We derive the basic properties of γ
and consider its values in some natural situations.
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1. Introduction. Everyone has encountered situations where there is more than
one way to accomplish some task and where it may be desirable to change strategies
from time to time depending on the outcome of various actions. In trying to contact
a colleague, for example, one might first try telephoning, and depending on the result,
telephone again later or perhaps try sending electronic mail. A dating strategy for
someone who is seeking a mate might call for trying a new prospect, or retrying an
old one, if things are going badly with the current one. In these situations, if one
knows the best first move from any state, one can behave optimally.

Suppose you are invited to play the following game. Tokens begin on vertices 2
and 5 of a path connecting vertices 0, . . . , 5 (see Figure 1). A valuable gift awaits you
if either token reaches vertex 3. At any time you may pay $1 and point to a token;
that token will then make a random move (with equal probability to its left or right
neighboring vertex if it has two neighbors, otherwise to its only neighbor). Which
token should you move first?

0 1 2 3 4 5

Fig. 1. What’s the fastest way to the gift?

It is not difficult to see that by moving the token at 2 first, then switching per-
manently to the other if the game does not end immediately, your expected cost to
reach the prize is $3; this is the unique optimal strategy. Contrast this with a similar
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“loyal” game in which you must choose one token and stick with it. Then, choosing
the token at vertex 5 costs $4 on average, and choosing the other token costs $5 on
average.

Now fix any graph G with distinguished target node t, and write u ≤ v if, in
the first-described game with tokens at u and v, there is an optimal strategy which
calls for moving the token at u first. Is this relation transitive—that is, if u ≤ v and
v ≤ w, does that imply u ≤ w? (Note that two tokens may occupy the same vertex;
in fact there is no loss or gain of generality if each token has its own graph and its
own target).

In the loyal game, the corresponding statement is trivially true because there is
a quantity (the expected length of a random walk from u to t, or the hitting time)
which measures the desirability of choosing the token at u, regardless of where the
other token may be.

When one is permitted to switch tokens the situation becomes more subtle.
Nonetheless, it does turn out that there is a measure of first-move desirability which
can be applied to a single token, and therefore transitivity does hold. This measure
(our function γ) is polynomial-time computable, and it is related both to what Markov
decision theorists know as the Gittins index of a single-armed bandit and to expected
hitting times in a different Markov chain. The development here, however, will be
mostly self-contained.

The main theorem will be stated in a more general, but by no means the most
general, form. The graph is replaced by two (or more) “Markov systems,” one for each
token; each system consists of a finite-state Markov chain with a starting state and a
target state, and a positive real move-cost at each state. Further generalizations are
considered along the way.

2. Markov systems. We call the pieces from which we construct our games
Markov systems. A Markov system S = 〈V, P,C, s, t〉 consists of a state space V
(which will be assumed finite unless otherwise specified), a transition matrix P =
{pu,v} indexed by V , a positive real move-cost Cv for each state v, a starting state
s, and a target state t. We will assume usually that t is accessible (ultimately) from
every state in V .

The cost of a “trip” v(0), . . . , v(k) on S is the sum
∑k−1

i=0 Cv(i) of the costs of the
exited states. The (finite) expected cost of a trip from v to the target t is denoted
Ev[S], with the subscript sometimes omitted when the trip begins at s. Since we
never exit the target state, we may arbitrarily set Ct = 0 and pt,t = 1.

3. Games and strategies. The games we consider are all played by a single
player against a “bank” and consist of a series of moves chosen and paid for by
the player, with random effect. We imagine that the player is forced to play until
termination, which occurs mercifully in finite expected time.

The cost E[G] of a game G is the minimum expected cost (to the player) of playing
G, taken over all possible strategies. A strategy which achieves expected cost E[G] is
said to be optimal.

Let S1, . . . ,Sk be k Markov systems, each of which has a token on its starting state
and an associated cost function Ci. A simple multitoken Markov game S1◦S2◦· · ·◦Sk

consists of a succession of steps in which we choose one of the k tokens, which takes
a random step in its system (i.e., according to its Pi). After choosing a token i (on
state u, say), we pay the cost Ci(u) associated with the state u of the system Si whose
token we have chosen. As soon as one of the tokens reaches its target state for the
first time, we stop.
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We define the terminator Tg as the Markov system 〈{s, t}, P, g, s, t〉, where ps,t=1.
The terminator always hits its target in exactly one step, at cost g. The token vs.
terminator game, in which we play a simple two-token game of systems S (for some
S) and Tg (for some g), will play a critical role in the analysis of general Markov
games.

It will also be useful to define the join G = G1�G2� · · ·�Gn of games G1, . . . ,Gn as
follows: at each step the player chooses one of the n games, then pays for and makes
a move in that game. G terminates when any of its component games is finished. We
will employ the join in order to analyze the Markov game S1 ◦ S2 ◦ · · · ◦ Sk.

Throughout the paper, we will be using (sometimes without making explicit ref-
erence to) the following two classical theorems from the general theory of Markov
game strategies; the reader is referred to [6] for more detail.

The first theorem enables us to look for optimal strategies in a finite set.
Theorem 3.1. Every Markov game (in our sense) has a pure optimal strategy.
From a given state u of a Markov game, an action α produces an immediate

expected cost Cu(α) and a probability distribution {pu,·} of new states. (Note that in
the present context, a state of a Markov game consisting of k Markov systems would
be a specific configuration of the k tokens, and an action would correspond to the
choice of a particular token to move.) Thus a strategy σ which takes action α at the
state u satisfies

Eu[σ] = Cu(α) +
∑
v

pu,v(α)Ev[σ] .

If among all possible actions at state u, α minimizes the right-hand side of this
expression, σ is said to be consistent at u.

Theorem 3.2. A strategy σ is optimal if and only if it is consistent at every
state.

Proof. Let τ be an optimal strategy and U the set of states v on which Ev[τ ]−Ev[σ]
attains its minimal value x. Since t /∈ U , we can find a state u ∈ U from which some
state not in U can be reached in one step by τ . But then, if α is the action taken by
τ at u,

Eu[σ] = Eu[τ ] + x = Cu(α) +
∑
v

pu,v(α)(Ev[τ ] + x) < Cu(α) +
∑
v

pu,v(α)Ev[σ],

contradicting the fact that σ is consistent at u.

4. The grade. We say that an optimal player is indifferent among some set of
moves if for each of those moves there is an optimal strategy which employs it. Going
back to the token vs. terminator game from the preceding section, we define the grade
γ(S) of a system S = 〈V, P,C, s, t〉 to be the unique value of g at which an optimal
player is indifferent between the two possible first moves in the game Gg = S◦Tg. Thus,
γ(S) is the least value of g such that if, at any time, we can pay g to quit the system
S, we are still willing to try one move in S. (To be consistent with our notation below,
we should be denoting γ(S) by γs(S), indicating the start state of the game.)

To see that γ = γ(S) is a well-defined quantity, we will make use of Theorem 3.1.
Any pure strategy σ is defined by the set Q(⊂ V ) of states in which it chooses to
move in Tg. Suppose S is run until either t or a state in Q is reached; let the first
event be represented by R, and let X be the final cost of the run in S. Put p = Pr[R],
A = E[X|R], and B = E[X|¬R]. Then

E[σ] = pA+ (1−p)(B+g),
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i.e., E[σ] is linear in g for fixed strategy σ. Optimizing over σ, it follows that E[Gg]
is the maximum of a set of linear functions and is therefore continuous in g. For g
less than the cost of the first move, E[Gg] = g (because we choose to move in Tg). On
the other hand, if g exceeds the expected cost Ev[S] from any state v, then we will
always choose to move in S, hence E[Gg] = Es[S]. Figure 2 illustrates a typical shape
for the graph of E[Gg].

g

E[Gg]

γ(S)

γ(S)

E[S]

Fig. 2. The expected cost of Gg = S ◦ Tg.

The grade of S is marked on the figure as the highest value of g at which the
strategy “play in Tg” is optimal, i.e., the coordinate of the top end of the line segment
of slope 1.

We use γu(S) or just γu (when S is fixed except for its starting state) to denote
the grade of Su = 〈V, P,C, u, t〉. Hence we can formulate the following theorem.

Theorem 4.1. A strategy for S◦Tg is optimal if and only if it chooses S whenever
the current state u of S satisfies γu < g and it chooses Tg whenever γu > g.

Remark 4.2. Note that in system S = 〈V, P,C, s, t〉 there is positive probability of
moving from s to a state of strictly lower grade. Otherwise, in the token vs. terminator
game S ◦ T (γ(S)) the strategy of paying for the first move in S and then terminating
would be optimal, yet more costly than terminating immediately.

5. An optimal strategy for the simple multitoken game. The surprising
and fundamental discovery of Gittins, first proved by Gittins and Jones [2], was that
in many Markov games, options could be “indexed” separately and then numerically
compared to determine an optimal strategy. This is indeed the case for our games,
the index being the “grade” defined above.

Theorem 5.1. A strategy for the game G = 〈S1 ◦ · · · ◦ Sn〉 is optimal if and only
if it always plays in a system whose current grade is minimal.

Proof. We will employ a modified version of the very elegant proof given by
Weber [5] for Gittins’ theorem. Our “grade” differs from the Gittins index in several
minor respects, among them that our games terminate and our costs are not subject
to discounting (about which more later). These differences are not sufficient to regard
the grade as other than a special case, or variation, of the Gittins index.

The proof will proceed using a sequence of easy lemmas. We begin by considering
a “reward game” Si(g) based on the system Si, in which we play and pay as in S



608 I. DUMITRIU, P. TETALI, AND P. WINKLER

but may quit at any time; as incentive to play, however, there is a reward of g at the
target which we may claim when and if the target is reached.

Lemma 5.2. Si(γ(Si)) is a fair game (that is, the expectation E[Si(γ(Si))] = 0)
and a strategy for Si(γ(Si)) is optimal if and only if the player quits whenever his
current state u satisfies γu > g and plays on when γu < g.

Proof. The reward game is no different from a terminator game S ◦ Tγ(Si) in
which the player is provided with an initial stake of γ(Si), hence the characterization
of optimality follows from Theorem 4.1. Since quitting immediately is among the
optimal strategies, E[Si(γ(Si))] = 0.

Suppose the game Si(γu(Si)) is amended in the following teasing manner: when-
ever the player reaches a state u with γu > g, the reward at the target is boosted up
to γu—just enough to tempt the player to continue. (Note that the reward is never
lowered.) It might seem that this game, which we will denote simply by S ′

i, is better
than fair, but we have the following lemma.

Lemma 5.3. S ′
i is fair, and a strategy for S ′

i is optimal if and only if the player
never quits when the current grade is below the current reward value.

Proof. To see that E[S ′
i] = 0, note that a session with S ′

i can be broken up into
a series of smaller games, each ending either upon reaching a state U whose grade
exceeds the current reward value, or upon reaching the final target. Since each of these
games is fair, so is S ′

i. Note that the antipodal strategies of quitting immediately, and
of playing until the target is hit, are in particular both optimal.

Now we consider the join G′ := S ′
1� · · ·�S ′

n, in which we play the teaser game of
our choice, paying as we go, until we quit or hit one of the targets (in which case we
claim the current reward at that target).

Lemma 5.4. G′ is a fair game.
Proof. Any combination (simultaneous, sequential, or interleaved) of the inde-

pendent fair games S ′
1, . . . ,S ′

n is still fair. The join G′ can be no better than such a
combination, since it differs only in having additional restrictions on the player; hence
it is at best fair. However, G′ cannot be worse than fair, since, e.g., the player can
simply quit at the start or play one game to its finish and ignore the others.

Among the strategies for G′ is one we call the “Gittins strategy” Γ: always play
from a system which is currently of minimal grade. This is the strategy we claim is
optimal for the original game G, but first we observe two properties of Γ relative to
the game G′.

Lemma 5.5. The Gittins strategy Γ is optimal for G′.
Proof. If a move by Γ results in the grade of a component game S ′

i dropping below
its reward value, then since its grade has just gone down it is now the unique lowest-
grade component and therefore Γ will again move that token. Hence no component
system will ever be stranded in a state u with γu less than the reward on target ti,
thus all the components S ′

i are played optimally.

Lemma 5.6. Of all strategies for G′ which play until a target is hit, Γ reaps the
smallest expected reward at the end. In other words, if the move-costs are waived, then
Γ actually is the worst (in terms of reward collected) possible nonquitting strategy for
G′. Furthermore, among nonquitting strategies which are optimal for the unaltered
game G′, Γ is the only one with this property.

Proof. Imagine that the course of each individual system Si is fixed. Then each
teaser game S ′

i terminates, if played all the way to its target, with a certain reward
gi (equal to the largest γu over all states u hit en route). Every nonquitting strategy
will claim one of the rewards gi at the end, but the Gittins strategy gets the smallest
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one; the reason is that if it collected a nonminimal reward (say gj) when teaser game
S ′
i, i �= j, was headed for a final reward of gi < gj , then at the time of termination

of G′ the reward for S ′
i was gi or less, hence γu(Si) ≤ gi where u is its last state.

But this is impossible because the final run of plays of Sj began at a state v where
γv(Sj) = gj or more, and Γ should have preferred to play in Si at that time. From
the proof it is clear that Γ is unique in the sense of the last assertion in the statement
of the lemma.

We are finally ready to show that Γ is optimal for the original game G. For any
nonquitting strategy ∆ for G′, let C(∆) be its expected cost and R(∆) its expected
reward; thus E[∆] = R(∆)− C(∆) ≤ 0 since G′ is fair. But then since E[Γ] = 0,

C(Γ) = R(Γ) ≤ R(∆) ≤ C(∆),

so Γ incurs the least cost among all nonquitting strategies for G′, and this says exactly
that it is optimal for G.

If ∆ is also optimal for G, then the above inequalities are both tight, hence
Lemmas 5.5 and 5.6 both hold for ∆. If ∆ is not a Gittins strategy, then we may
assume that ∆ makes a non-Gittins move already at the start of the game, playing
S2 even though S1 has smaller grade. This will not necessarily cause it to miss the
smallest reward in G′, because there may be 0 probability of that system hitting its
target immediately and ∆ can return to S1 before it’s too late. However, it follows
from Remark 4.2 above that there is always a positive probability that any system
will reach its target along a path whose grade is strictly declining. If this is fated to
happen to both S1 and S2, then ∆ will either end up accepting the larger reward of
S2 (thus failing to have minimal reward) or leave one of the systems in a “grade below
reward” state (thus failing to be optimal for G′).

We conclude that ∆ is optimal for G if and only if it is a Gittins strategy, and
the proof of Theorem 5.1 is complete.

6. The grade and the Gittins index. Both the history and the range of
applicability of the Gittins index are rather complex subjects; the reader is referred to
Gittins’ modestly written book [1] for some appreciation of the former. It appears that
the mathematical and statistical communities took some time to appreciate that the
notorious “multi-armed bandit” problem had been solved; then they took additional
time to find new, cleaner proofs and to uncover some very nice disguised consequences.
The experience of this paper’s authors suggests that the Gittins index is still not widely
known in the mathematical community, especially among researchers in combinatorics
and in the theory of computing. We hope to make a start at rectifying the situation
with this work.

Framed in our terms, the circumstances to which the Gittins index was originally
applied comprise a collection of Markov systems S1, . . . ,Sn such as those we have
considered but without target states and with rewards instead of costs. When a
system is chosen (say at time t) a (possibly random) nonnegative and uniformly
bounded reward Rt, dependent on the state of that system, is collected. The object
is to maximize

∑∞
t=0 βtRt, where β is a “discount” strictly between 0 and 1.

“Gittins’ theorem” asserts the existence of an index depending on system and
state whose maximization at each stage produces an optimal strategy. Readers are
referred to [7] and [4] as well as [2], [5] and Gittins’ book [1] for various proofs.

The discount β is ubiquitous in Markov decision theory and in economics, finan-
cial, and actuarial research as well. It is necessary in the multi-armed bandit formu-
lation to make the objective function finite. Discounts are less natural and familiar to
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pure mathematicians and are obviated in our presentation, where the presence of ter-
minating targets keeps things finite. The elimination of discounts, particularly in the
context of job scheduling problems, is discussed in section 6.2 of [1]; one approach,
which can be used to deduce Theorem 5.1 from Gittins’ theorem, is to let targets
represent cycling states of zero reward and allow the discount factor to approach 1.

One benefit of our formulation is its natural application to the problem of min-
imizing the time needed to reach a goal, for example, for some token on a graph to
reach a target node via random walk. As a result we can represent our “grade” γ as
a hitting time, or more generally a hitting cost.

Let S = 〈V, P,C, s, t〉 be a Markov system and let U ⊂ V \{s, t}. Define a new
system S �U = 〈U ∪ {s, t}, P ′, C, s, t〉 by putting

p′u,s = pu,s +
∑

v∈V \{U∪{s,t}}
pu,v

and p′u,w = pu,w for w ∈ U and u ∈ U . In effect, S �U is the restriction of S to U ,
where the state-marking token is sent back to s whenever it tries to leave U .

Theorem 6.1. With S and U as above, γs(S) ≤ Es[S � U ], with equality if U
contains all states of grade lower than γs and no states of grade higher than γs.

Proof. Let σ be the strategy for playing the “reward game” S(γs(S)) which entails
playing until the target is hit or some state v ∈ V \U is reached, in which case the
game is terminated. Since S(γs(S)) is a fair game, σ has nonpositive expectation.
Suppose we are permitted to restart a new S(γs(S)) and continue with strategy σ,
whenever there is a voluntary termination. The resulting sequence of games still has
nonpositive expectation but is equivalent to playing the reward game S � U(γs(S))
until the target is hit. Since this will always result in collecting γs(S) at the end, the
expected total move-cost must be at least γs(S).

On the other hand, we know from Theorem 4.1 that σ is optimal (thus has zero
expected reward) when U fulfills the additional conditions; in that case we get that
the expected total move-cost is precisely γs(S).

Note that the U = ∅ case yields the rather obvious fact that γx ≤ Ex[S] for all x.
It might be argued that Theorem 6.1 is circular since it reduces computing the

grade to computing a hitting cost, but only if we know which states have grade less
than γs, and which have grade more than γs. However, in the next section we use the
theorem recursively to compute grades one by one.

7. Computing the grade. Like (most variations of) the Gittins index, our
“grade” can be determined in time bounded by a polynomial in the length of descrip-
tion of a system S. We will now present and analyze an algorithm which calculates
the grade γu of all the states u of S, one state at a time.

Let U be the set of states in V whose grades have already been calculated. We
add one more state to U , namely, the state of smallest grade in V \U . Let N(U)
denote the set of states x in V \U that are reachable directly from a state in U (i.e.,
N(U) := {v ∈ V |pu,v > 0 for some u ∈ U}).

As before, Ex[S]—the “hitting cost”—denotes the expected cost of a trip to t
from x.

The algorithm is given in pseudocode below.
1. U = {t}, γt = 0;
2. While V \U �= φ

(a) CheckedStates = φ;
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(b) While CheckedStates �= N(U)
i. Choose v ∈ N(U)\CheckedStates;
ii. Let P ′ = {p′u,v} be the transition matrix obtained from P = {pu,v}

in the following way:
• P ′ disregards all states not in U ∪ {v};
• p′u,v = pu,v +

∑
w∈V \{U∪{v}} pu,w ∀u ∈ U ∪ {v};

• p′u,u′ = pu,u′ ∀u ∈ U ∪ {v} and u′ ∈ U .
iii. Compute hv = Ev[S ′], where S ′ = 〈U,P ′, C, v, t〉;
iv. CheckedStates = CheckedStates ∪{v};

(c) Find x such that hx = min{hv : v ∈ CheckedStates};
(d) U = U ∪ {x}, γ(x) = hx.

It is evident from Theorem 6.1 that if the selected state x always has minimum
grade among the states in V \U , then the algorithm correctly computes the grades of
all states in V .

We first note that a minimum grade x /∈ U is indeed to be found among the
neighbors of U , because Remark 4.2 implies that there is a path of decreasing grade
from x to t.

It remains only to establish that if v ∈ V \U is not of minimum grade, then
hv = Ev[S ′] is at least as large as γv. But this is exactly the content of Theorem 6.1
of the preceding section.

Let us now analyze the running time for the algorithm.
Let n be the initial number of states. At step i, N(U) has O(n−i) states. For any

state in N(U), the greatest workload is done to compute Ev(P
′). It involves solving

an (i+1)×(i+1) system of equations; this can be done by an LU factorization followed
by a backward substitution, and it represents O(i3) work. Therefore, we can compute
all the grades in O(

∑n
i=1(n−i)i3) = O(n5) time.

8. States of maximum grade. If the starting state of system S has maximum
grade, then “never quitting” is an optimal strategy for the token vs. terminator game
S ◦ Tγ . Hence we have the following lemma.

Lemma 8.1. Let z be a state of maximum grade in a system S. Then γz = Ez[S].
The converse of Lemma 8.1 fails for the uninteresting reason that states of higher

grade than z may exist but not be accessible from z. More interesting is the question
of maximum grade versus maximum hitting cost (that is, maximum expected cost of
hitting t).

Theorem 8.2. In any system S the states of maximum grade and the states of
maximum hitting cost are the same.

Proof. Suppose that x maximizes Ex[S], that is, x incurs the greatest expected
cost hx = Ex[S] of hitting t assuming best strategy. Then we claim that γx = hx. To
see this, we let U be the set of states u in V such that γu > γx and compute hx by
considering the effect of the event “A” that a walk from x hits U before it reaches t.
Then

hx = Pr[¬A]Ex[S|¬A] + Pr[A] (Ex[U ] + EU [S])
≤ Pr[¬A]Ex[S|¬A] + Pr[A] (Ex[U ] + hx) ,

where Ex[U ] is the expected cost of hitting U from x and EU [S] is the expected cost
of hitting t from the random point in U which is hit first. Solving, we get

hx(1− Pr[A]) ≤ Pr[¬A]Ex[S|¬A] + Pr[A]Ex[U ] .
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However, if we compute γx = Ex[S �U ] in the same fashion, we get

Ex[S �U ](1− Pr[A]) = Pr[¬A]Ex[S|¬A] + Pr[A]Ex[U ]

so that hx ≤ γx; thus they are equal. In particular, γy ≤ hy ≤ hx = γx for all y so x
also has maximal grade.

Suppose, on the other hand, that z has maximal grade, but not maximal hitting
cost; let x have maximal hitting cost. But then we have seen that γx = hx > hz ≥ γz,
a contradiction. The theorem follows.

Remark 8.3. Theorems 6.1 and 8.2 provide an algorithm for computing grades
from highest to lowest, as opposed to the one we presented earlier. The idea is to
find the state x1 of largest hitting cost (hence highest grade), then the state x2 which
maximizes Ex2 [S �(V \{x1})], etc. Although we are not able to take advantage here of
the neighborhood structure, the running time for this algorithm is of the same order
as before, relative to the number of states.

9. Grades and graphs. The hitting time (from, say, x to y) for a simple random
walk on a graph G has many beautiful properties, including ties to electrical networks;
our analogue, the “grade,” has the additional advantage of being finite even when G
is infinite. Below we illustrate some calculations and theorems concerning the grades
of vertices of some symmetric graphs.

We have assumed up until now that our Markov chains have finite state spaces,
and indeed it would appear that there are problems with the expected outcome of
our basic game when the expected number of steps to hit a target is infinite; or even
worse, when there is positive probability that the target will never be hit. However,
the simple multitoken game makes sense as long as at least one of the systems it deals
with has a finite hitting time to the target, and of course the “terminator” system
has this property. It is not difficult to prove that.

Theorem 9.1. Let M be an infinite, locally finite Markov chain, with designated
target state t. Then

1. every state u of M has a grade γu = γu(M) < ∞;
2. for all real k, the set Sk = {v ∈ M : γv < k} is finite;
3. for all u ∈ M, there exists a finite chain M′, obtained via suppressing all but
a finite number of states in M, for which γu(M) = γu(M′).

We will sketch the proof of Theorem 9.1; it is left to the reader to fill in the
details.

Proof.

1. Since the Markov chain is locally finite, it follows that from any state u there
is a (finite) shortest path to t. Let u be an arbitrary state, let k < ∞ be
the length of a shortest path from u to t, and let p be the probability of this
path. (Since the chain is locally finite, it follows that p > 0.) Let g∗ = k/p,
and consider the token vs. terminator Tg∗ game, with the following strategy:
starting from u, move k times “blindly” on M, paying before each move; if
after k steps the token is not on the target, pay the terminator and end the
game in a step.
It is immediate to verify that this strategy, though perhaps suboptimal, breaks
even: the expected profit/loss from it is 0. But if γu were infinite, then for
any finite g (in particular for g∗), any strategy for the token vs. terminator Tg

game that does not choose the terminator Tg immediately would guarantee a
positive loss! Hence γu must be finite. Moreover, it also follows that g∗ ≥ γu.
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2. A state v whose distance from t is at least k will also (necessarily) have a
grade of at least k; this is equivalent to saying that for any real k, Sk ⊆ Dk =
{v ∈ M : dist(v, t) < k}. Due to the local finiteness of the chain, for any real
k, the set Dk is finite; hence for any real k, Sk is finite.

3. This follows directly from 1 and 2: given a state u, let k = γu, and suppress
all states of M but for those in Sk. In the newly obtained finite chain M′,
γu(M) = γu(M′).

In the following subsections, we consider the grade function for the simple random
walk on each of the following graphs: the hypercube, the Cayley tree, the plane square
grid, and the cubic grid in three-space. The last three are immediately relevant to
the above, as infinite, locally finite chains; the first is finite, but interesting in itself.

9.1. The hypercube. We begin with a finite graph, the n-dimensional hyper-
cube Qn, whose vertices are binary sequences u = (u1, . . . , un) with u ∼ v when
they differ in just one coordinate. The “kth level” of Qn consists of the vertices with
exactly k 1’s. If the target vertex is fixed at the origin, then the grade γk of a point
in level k is the hitting time from level k to level 0 in the truncated hypercube Qn

k ,
defined as follows: all vertices at level greater than k are deleted, and each vertex at
level k is provided with n−k loops so that its total degree is n.

Let Tj be the time it takes to get from level j to level j − 1 in Qn
k . Clearly

γk =
∑k

j=1 Tj ; we derive the following recursion for Tj :

Tk =
n

k
, and

Tj = 1 +
n− j

n

(
Tj + Tj+1

)
.

It is straightforward to verify that

Tj =
1(

n−1
n−j

)
n∑

i=n−j

(
n

i

)
;

this yields

γk =

k∑
i=1

1(
n−1
n−j

)
n∑

i=n−j

(
n

i

)
.

9.2. The Cayley tree. The d-regular Cayley tree is the unique connected, cycle-
free infinite graph T d whose vertices each has degree d. Again, this is a symmetric
graph so we may assume the target vertex is an arbitrary “root” t.

The case d = 2 is the doubly infinite path, in which the grade of a vertex v at
distance k from t is easily seen to be k(k+1).

In general, the grade γk of a vertex v at distance k from the root is the hitting
time from v to t in the graph T d

k consisting of the first k levels of the tree (the root
being at level 0), in which every vertex on the last level has d−1 loops (instead of
d−1 children). This leads to a recurrence to which the solution, for d > 2, is:

γk =
d
(
(d− 1)k+1 − 1− (k + 1)(d− 2)

)
(d− 2)2

.(9.1)
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Interestingly, there is another way to compute the grade on T d which works on
any finite tree and shows that on trees, grades and hitting times are always integers.
Let T be any tree, possibly with loops. Fix a target vertex t, and let v be any other
vertex. Order the edges (including loops) incident to each u �= t arbitrarily subject
to the edge on the path from u to t being last. Now walk from v by choosing each
exiting edge in round-robin fashion, in accordance with the edge-order at the current
vertex, until t is reached. For example, if the edges incident to some degree-3 vertex
u are ordered e1, e2, e3, then the first time u is reached it is exited via e1, the second
time by e2, the fourth time by e1 again, etc. We call such a walk a “whirling tour”;
an example is provided in Figure 3.

Fig. 3. A whirling tour.

Theorem 9.2. In any finite tree (possibly with some loops) the length of any
whirling tour from v to t is exactly the expected hitting time from v to t.

We leave the proof to the amusement of the reader.
We will denote by gk the length of such a walk from the kth level to the root for

every k ∈ N, k ≥ 1.
In order to walk from level k to level 0 (the root), we have to first execute a walk

from level k to level 1 and then walk from there to the root. The rest of the walk will
be a depth-first search of a (d−1)-ary tree with loops for leaves, plus the final edge.
The length of the depth-first search is easily computed: we have

k−2∑
i=1

(d− 1)i =
(d− 1)k−1 − 1

d− 2
− 1

edges and (d− 1)k−1 loops; each edge is walked twice (once forward, once backward)
and each loop is walked once for a total length of

2
( (d− 1)k − 1

d− 2
− 1

)
+ (d− 1)k =

d(d− 1)k − 2d

d− 2
.

This sets up the recurrence

gk =
d(d− 1)k − 2d+ 2

d− 2
+ gk−1 + 1,
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where g0 = 0, g1 = d. Thus,

gk =

n∑
j=1

d
(
(d− 1)j − 1

)
d− 2

=
d
(
(d− 1)k+1 − 1− (k + 1)(d− 2)

)
(d− 2)2

in accordance with (9.1), as expected.

9.3. Grids. The d-dimensional grid Z
d is the graph whose vertices are d-tuples

of integers, with u ∼ v if u and v are at Euclidean distance 1. Since simple random
walks on Z

d behave approximately symmetrically with respect to rotation, one would
expect that the Gittins index of a node of Z

d, with the origin as target, depends
largely on its distance from the origin. This and more has recently been verified by
Janson and Peres [3]; we quote their results below. To prove these, Janson and Peres
employ a general lemma bounding the grade of each state of a Markov chain on both
sides. The bounds are provided by integrals which depend on some harmonic function
defined on the states.

Theorem 9.3. For simple random walk on Z
2,

γ(x, 0) = 2|x|2 ln |x|+ (2γ + 3 ln 2− 1)|x|2 +O(|x| ln |x|), |x| ≥ 2,

where γ on the right-hand side is Euler’s constant, limn→∞(− loge n+
∑n

i=1 1/i).
Theorem 9.4. For simple random walk on Z

d, d ≥ 3,

γ(x, 0) =
ωd

pd
|x|d +O(|x|d−1),

where ωd = πd/2/Γ(d/2 + 1) is the volume of the unit ball in R
d and pd is the escape

probability of the simple random walk, i.e., the probability that the random walk never
returns to its starting point.

From these theorems it follows that for each dimension d there is a constant
C = C(d), independent of the starting position x, such that the optimal strategy is
to restart from every position y with |y| > |x|+ C but never when |y| < |x|+ C.
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