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Perfect shuffles

Suppose you take a deck of 52 cards, cut it in half, and

perfectly shuffle it (with the bottom card staying on the

bottom).

If this is done 8 times, the deck returns to the order it was in

before the first shuffle.

But, if you include the 2 jokers, so there are 54 cards, then it

takes 52 shuffles, while a deck of 50 cards takes 21 shuffles.

What’s going on?
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For an odd number n, let l(n) = l2(n) denote the mutliplicative

order of 2 in (Z/nZ)×. Note that

l(51) = 8, l(53) = 52, l(49) = 21.

In fact, it is not hard to prove that the number of perfect

shuffles to return a deck of 2n cards to it’s initial order is

l(2n − 1).

(Number the cards 0 to 2n − 1, with 0 the bottom card. Then

a perfect shuffle takes a card in position i and sends it to

2i mod 2n − 1.)
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This function l(n) (= the multiplicative order of 2 mod n)

appears to be very erratic and difficult to get hold of. It is of

interest not only in card shuffling, but in computing the periods

of certain pseudo-random number generators, and in other

cryptographic contexts.

Further, as a basic and ubiquitous number-theoretic function it

seems interesting to study l(n), and more generally la(n) (the

order of a in (Z/nZ)×) from a statistical viewpoint.

What is it normally?

What is it on average?

3



One elementary result that goes back to Gauss and Carmichael

is that la(n) | λ(n).

Here λ(n) is the order of the largest cyclic subgroup in (Z/nZ)×

and is defined by

λ([m, n]) = [λ(m), λ(n)], λ(pα) = ϕ(pα)

for odd primes p and pα = 2 or 4, and λ(2α) = 2α−2 for α ≥ 3.

For λ, we do have results about it’s normal and average order,

and they are a far cry from a possible first guess, the normal

and average orders of ϕ.
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Erdős, P, Schmutz: On a set of asymptotic density 1,

λ(n) = n/(logn)log log logn+A+o(1)

for a certain explicit positive constant A.

Erdős, P, Schmutz: As x → ∞,

1

x

∑

n≤x

λ(n) =
x

log x
exp

(

(B + o(1)) log log x

log log log x

)

for a certain explicit positive constant B.
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Further, we know (assuming the Generalized Riemann

Hypothesis for the Galois closures of Kummerian fields) that for

most n coprime to a, we have λ(n)/la(n) small. (Results of Li,

Kurlberg, and Li & P.)

Thus, one has

la(n) = n/(logn)log log logn+A+o(1)

for almost all n coprime to a.

Clearly the average order of λ(n), which is of greater

magnitude than n/ logn, is much larger than the normal order,

so the average is determined by a thin set of numbers with

abnormally large values of λ. Thus, it is unclear what is

happening with the average order of la(n).
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After some numerical experiments, V. I. Arnold recently

concluded that on average la(n) is Can/ logn, and he gave a

heuristic argument for this based on the physical principle of

turbulence. This is in the paper

Number-theoretical turbulence in Fermat–Euler arithmetics and

large Young diagrams geometry statistics, Journal of Fluid

Mechanics 7 (2005), S4–S50.

It also was the subject of one the Chern Lectures he gave at

UC Berkeley in 2007.
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Arnold writes in the abstract:

“Many stochastic phenomena in deterministic mathematics had

been discovered recently by the experimental way, imitating

Kolmogorov’s semi-empirical methods of discovery of the

turbulence laws. From the deductive mathematics point of view

most of these results are not theorems, being only descriptions

of several millions of particular observations. However, I hope

that they are even more important than the formal deductions

from the formal axioms, providing new points of view on

difficult problems where no other approaches are that efficient.”

And he asserts that his expression Can/ logn for the average

order of la(n) is in fact supported by billions of experiments.
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I think we should be a bit suspicious!

First, iterated logarithms grow so slowly that they are difficult

to detect numerically.

Second, Arnold did not seem to investigate any of the

(admittedly scant) literature dealing with la(n). In fact, there

are interesting papers on the subject going back to Romanoff

(who proved that the sum of 1/(nla(n)) for n coprime to a is

convergent), with later papers by Erdős, P, Pappalardi, Li,

Kurlberg, Murty, Rosen, Silverman, Saidak, Moree, Luca,

Shparlinski, and others.

9



But. . .

It’s good to have outsiders investigate a field, and if they were

expected to first read the literature thoroughly, it might

dampen the fresh insight they might bring.

And, his conjecture that the average order of l(n) grows like

n/ logn is supported on one side by Hooley’s GRH-conditional

proof of Artin’s conjecture. Thus, assuming the GRH, a

positive proportion of primes p have l(p) = p − 1, so that just

the contribution of primes to the sum of l(n) gives an average

order that is � n/ logn. And perhaps composites do not

contribute too much.

However. . .
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Shparlinski (2007): Let |a| > 1. Assuming the GRH, there is

some Ca > 0 with

1

x

∑

n≤x
(a,n)=1

la(n) �
x

log x
exp

(

Ca(log log log x)3/2
)

.

(On some dynamical systems in finite fields and residue rings,

Discrete and continuous dynamical systems, Series A 17

(2007), 901–917.)

And he suggests that with more work, the exponent “3/2”

might possibly be replaced with “2”.
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Balazard, Kurlberg, P: Let |a| > 1. Assuming the GRH,

1

x

∑

n≤x
(a,n)=1

la(n) =
x

log x
exp

(

(B + o(1)) log log x

log log log x

)

.

Here “B” is the same constant that appears in the average

order of λ(n), namely

B = e−γ
∏

p

(

1 −
1

(p − 1)2(p + 1)

)

= 0.3453720641 . . . .

In particular, the upper bound in the theorem holds

unconditionally.
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The proof is a bit intense, borrowing heavily from the structure

of the proof in Erdős, P, & Schmutz of the corresponding

result for λ(n).

However, the following lemma is also used:

Kurlberg & P (2005): For 1 ≤ y ≤ logx/ log log x

{p ≤ x : la(p) < p/y} �
π(x)

y
.

This result follows essentially from the the Hooley GRH

conditional proof of Artin’s primitive-root conjecture.

(Pappalardi (1996) had this result in a wider range for y, but it

has been retracted. Kurlberg (2003) had this result in the

range y ≤ (log x)1−ε.)
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Probably better suited for presentation in a talk is a proof of

the following result from Balazard, Kurlberg, & P:

Assume the GRH. The average order of l(p) is 159
160cp, where

c =
∏

p

(

1 −
p

p3 − 1

)

.

(Note that 159
160c = 0.57236022 . . . , so that on average,

l(p) > 4
7p.)

Luca (2002) has shown that for averaging the orders of all

elements of (Z/pZ)×, this statistic has average order cp.
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For an odd prime p, let i(p) = (p − 1)/l(p), namely the index of

the subgroup 〈2〉 in (Z/pZ)×. Let z be some parameter tending

to infinity that we will specify later. We have

∑

p≤x

l(p) =
∑

p≤x
i(p)≤z

l(p) +
∑

p≤x
i(p)>z

l(p) = A + B,

say. Further, if z ≤ log x/ log log x, then the Kurlberg–P lemma

(or alternately, the Brun–Titchmarsh inequality) implies

B �
x

z
·
π(x)

z
�

xπ(x)

z2
,

which is o(xπ(x)) provided z → ∞.
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Now, for the main term A we might use known results for the

distribution of primes p where i(p) is fixed at some number, but

it seems simpler to use an inclusion–exclusion:

A =
∑

p≤x
i(p)≤z

(p − 1)
∑

uv|i(p)

µ(v)

u
.

We write this as C − D, where in C we drop the condition

i(p) ≤ z, but assume uv ≤ z, while in D we assume that i(p) > z

and uv ≤ z.

For D we majorize trivially (replace µ(v) with 1) and use the

Kurlberg–P lemma. For z < i(p) < z2, we get xπ(x)/z1−o(1) and

for i(p) ≥ z2, we get xπ(x)(log log x)/z.
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This leaves the main term

C =
∑

p≤x

(p − 1)
∑

uv|i(p)
uv≤z

µ(v)

u
=

∑

uv≤z

µ(v)

u

∑

p≤x
uv|i(p)

(p − 1).

For a given value of uv ≤ z, we can compute the inner sum by

partial summation and a GRH-conditional result in Hooley,

getting

xπ(x)

2uvϕ(uv)
+ O

(

x2

log2 x

)

if 8 - uv and twice this if 8 | uv. (If z ≤ (log x)1/7, say, we have

this unconditionally, but we needed the GRH to estimate the

error term D.)
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Thus, the main term is

C =
1

2
xπ(x)













∑

uv≤z

µ(v)

u2vϕ(uv)
+

∑

uv≤z
8|uv

µ(v)

u2vϕ(uv)













+ O

(

x2z log z

log2 x

)

.

So we see that a convenient choice of z is say (log x)1/2. For

the main term, we consider the expressions as infinite sums,

estimate the errors in truncation, and then rewrite the infinite

sums as Euler products. We get:

1

π(x)

∑

2<p≤x

l(p) =
159

320
cx + O

(

x

(log x)1/2−ε

)

.

�
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