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Our story begins with Fibonacci in his book Liber Abaci in

1202. He noticed that for some numbers n, like 12, one could

express each fraction m/n with m ≤ n as a sum of distinct unit

fractions with denominators dividing n:
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This property is equivalent to each m ≤ n being a sum of

distinct divisors of n. In the example, just multiply each

equation above by 12.
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In 1948, A. K. Srinivasan called such numbers practical. He

somewhat sarcastically claimed “The subdivisions of money,

weight, and measures are often done with numbers such as 4,

12, 16, 20, and 28 which are usually thought to be so

inconvenient as to deserve replacement with powers of 10.” In

his brief article he begins a study of the multiplicative nature of

a practical number.

A multiplicative criterion was found by W. Sierpiński in 1955

and independently by B. M. Stewart in 1954:

Recursively define a sequence of numbers that contains 1 and if

it contains m, it also contains mp for primes p ≤ σ(m) + 1. This

is precisely the sequence of practical numbers.

Here σ is the usual sum-of-divisors function.
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From the criterion we see for example that every power of 2 is

practical and that all practical numbers after 1 are even.

To prove the criterion, first note that if p > σ(m) + 1, then p − 1

cannot be written as a sum of divisors of mp, so the condition

is necessary. To show sufficiency we prove a stronger result by

induction:

If m is practical and p ≤ σ(m) + 1 is a prime not dividing m, then

every number up to σ(mpα) can be expressed as a subset sum

of the divisors of mpα.
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Assume every number up to σ(m) is a subset sum of divisors of

m, and let p be a prime not dividing m with p ≤ σ(m) + 1.

Consider the number mpα. The result holds for α = 0, so

assume it holds at α. Consider the interval

Ia = [apα+1, apα+1 + σ(mpα)], where a ≤ σ(m).

By the induction hypotheses, each number in this interval can

be written as a subset sum of divisors of mpα+1. Further,

σ(mpα) = σ(m)σ(pα) ≥ (p − 1)p
α+1 − 1

p − 1
= pα+1 − 1.

Thus, the intervals Ia can be glued together and we can

represent all numbers up to σ(m)pα+1 + σ(mpα) = σ(mpα+1).
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So is there a practical number theorem, which gives an
asymptotic for N(x), the number of practical numbers in [1, x]?

Srinivasan computed that N(200) = 50 and was not sure if
N(x) = o(x). In 1950, Erdős claimed that N(x) = o(x). Here is
likely what he was thinking:

A number n normally has close to log logn prime factors,
whether counted with or without multiplicity. This is a famous
theorem of Hardy and Ramanujan. So, for example, the
integers n with more than 1.1 log logn prime factors have
density 0. But if n has at most 1.1 log logn prime factors, then
the number of divisors of n is ≤ 21.1 log logn and the number of
subset sums of divisors is ≤ 221.1 log logn < n (since 1.1 log 2 < 1).
So, there are fewer than n subset sums of the divisors of n, so
n cannot be practical.
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Looking at a more quantitative version of the

Hardy–Ramanujan theorem would give the bound

N(x) ≤ x

(logx)η+o(1), η = 1 − 1 + log log 2

log 2
= 0.08607⋯.

However, the “correct” exponent on

logx is essentially 1, as shown by

Geráld Tenenbaum (1986, 1995):

N(x) = x

logx
(log logx)O(1).
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In 1997 Éric Saias got rid of the loglog

factors:

N(x) ≍ x

logx
.
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Meanwhile, in 1991, Maurice

Margenstern had conjectured that

there is a constant c > 0 with

N(x) ∼ c x

logx
, x→∞,

and on the basis of computing to

1013 that c ≈ 1.341.
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In 2015, Andreas Weingartner

showed that this indeed holds for

some c, and in 2020, he showed

that c = 1.33607⋯.

In fact, we have

c = 1

1 − e−γ ∑
npractical

1

n

⎛
⎝ ∑
p≤σ(n)+1

logp

p − 1
− logn

⎞
⎠ ∏
p≤σ(n)+1

(1 − 1

p
).
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In her 2012 dissertation, Thompson considered those n where

the polynomial tn − 1 has divisors in Z[t] of each degree m ≤ n.

For example, t12 − 1 has the cyclotomic polynomials Φd(t) as its

irreducible divisors for d ∣ 12. They have degrees 1, 1, 2, 2, 2,

and 4, and subsequence sums of these give all m ≤ 12.

Lola Thompson
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Thus, she said a number n is ϕ-practical if for each m ≤ n there

is a subset S of the divisors of n such that m = ∑d∈S ϕ(d). These

numbers are somewhat trickier than the practical numbers, as

there is no direct analogue of the Sierpiński–Stewart

multiplicative criterion. There, if you remove the top prime

from a practical number, the quotient is still practical. With

ϕ-practical numbers note that 315 = 32 × 5 × 7 is one, but

45 = 32 × 5 is not. Also, increasing the exponent on a prime

keeps a practical number practical, but not so with ϕ-practicals:

3 is ϕ-practical, but 9 is not.
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Nevertheless, Thompson was able to use the Saias machinery

to show that

Nϕ(x) ≍
x

logx
,

where Nϕ(x) is the number of ϕ-practical numbers in [1, x]. She

conjectured the asymptotic Nϕ(x) ∼ cx/ logx for some c > 0.

Numerically it seemed that c ≈ 1.

In 2016, P, Thompson, & Weingartner proved the

conjecture. Though we didn’t compute c, we gave a heuristic

that c ≈ 0.96.
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Another application of the ideas behind practical numbers is to

numbers with “dense” divisors. These are numbers n whose

increasing sequence of divisors 1 = d1 < d2 < ⋯ < dt = n satisfy

di/di−1 ≤ 2 for i = 2, . . . , t. (This condition is stronger than in the

Erdős “propinquity” problem, where he conjectured that

asymptotically all integers have two divisors d,d′ with

1 < d′/d ≤ 2; this was proved by Maier & Tenenbaum in 1984.)

Helmut Maier
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The integers with dense divisors are sparser than the practicals,

in fact one can show that they are a proper subset. Similar to

the Sierpiński–Stewart criterion, the integers with dense

divisors are recursively built from the rule that 1 is in the set,

and if m is in, so is mp for all primes p ≤ 2m. That is, we

replace “σ(m) + 1” in the rule for practical numbers with “2m”.

After many papers by Tenenbaum, Saias, and Weingartner,

we now know the asymptotic distribution of the integers with

dense divisors, it is of the shape c′x/ logx. This work played a

prominent role in the work on practical numbers, and

ϕ-practicals.
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Because of the Margenstern conjecture (and Weingartner

theorem) that N(x) ∼ cx/ logx, it seems natural to ask similar

questions for practicals as we ask for primes.

For example, do we have infinitely many twin practicals, namely

n and n + 2 are both practical? Margenstern (1991) proved

that this is in fact the case, and P & Weingartner (2020)

showed that the number N2(x) of such n in [1, x] satisfies

x

(logx)9.5367
≪N2(x) ≪

x

(logx)2
.

The same holds for any even gap h > 0, with implied constants

depending on h. Presumably N2(x) ∼ c2x/(logx)2.
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To show that the number of twin practicals to x is ≪ x/(logx)2,

we write a pair of twin practicals n,n + 2 with n ≤ x as mq,m′q′,
where m,m′ ∈ [x1/7, x1/3], with the smallest prime factor of q at

least the largest prime factor of m, and similarly for m′, q′. The

proof is largely completed by a sieve argument: for a given

choice of m,m′, count values of q ≤ x/m with q having only large

prime factors, qm + 2 ≡ 0 (mod m′), and the prime factors of

(qm + 2)/m′ are all large. There are some technical hurdles in

eliminating smaller order factors in the expression x/(logx)2.
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Here’s how we show there are many twin practicals. We can
show there are ≫ x/(logx)2 pairs m1,m2 of practical numbers in
(√x/2,√x] with gcd(m1,m2) = 2. Given such a pair, there are
a1, a2 ≤ √

x with a1m1 − a2m2 = 2. But multiplying a practical
number m by a number a < 2m has am also practical. Thus, we
have the twin practicals a1m1, a2m2.

It would seem that we have created ≫ x/(logx)2 twin practicals
below x, but one needs to wonder if the same twin practical
pair is counted multiple times. Since there are many practical
numbers in (√x/2,√x], we can discard those with many prime
factors, so Ω(m1),Ω(m2) are under control. Also, for m1 fixed,
the map that sends m2 to a1 is at most 2-to-1, and similarly for
a2. Thus, we see many different numbers a1, a2, and again we
can discard those with Ω(a1),Ω(a2) large. Thus, the number of
representations for a given pair of twin practicals is at most
“poly-log” in size, which leads to our theorem.
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Guo & Weingartner (2018) showed that the number Nπ(x) of
primes p ≤ x with p − 1 practical satisfies

π(x)
(logx)4.7684

≪Nπ(x) ≪
π(x)

(logx)0.08607
.

This has been improved (P & Weingartner (2020)) to

π(x)
(logx)2.1648

≪Nπ(x) ≪
π(x)
logx

.

Presumably the new upper bound is tight.

For the upper bound proof, write a practical number n as mq
where q is the largest prime factor of n. Then if n + 1 = p is
prime, we are asking, for a given m, for primes q with mq + 1
prime. This almost does it, but there are some technicalities to
deal with the cases when q is small (so m is smooth) or when
m/ϕ(m) large.
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Here is how we attacked the lower bound. If n is a practical

number and p is a prime with p < n2 and p ≡ 1 (mod n), then

p − 1 = an is practical. Unfortunately we don’t know that there

are any primes at all satisfying this, though it is conjectured.

However, if we let n be a little below
√
x and average over

many practical numbers n in this range, the

Bombieri–Vinogradov theorem comes to the rescue and

shows that there are many such p,n pairs, with p ≤ x.

The trouble with this argument is that it is not guaranteed that

p − 1 = an is practical, since now a can be a fair bit above n.

However, most values of a would work, only those with a very

large prime factor are ruled out, and we can use sieve methods

to prove this.
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Using a brand new theorem of Maynard instead of the

Bombieri–Vinogradov theorem would eliminate the need to

worry about the numbers a that appear, they can be assumed

to be < n.

Enrico Bombieri Askold Ivanovich Vinogradov James Maynard
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What about an analogue of the Goldbach conjecture for

practical numbers?

Margenstern (1991) conjectured that every even number is

the sum of two practical numbers, and that every odd number

> 1 is the sum of a prime and a practical number.

Melfi (1996) proved the even part of the conjecture.

Giuseppe Melfi
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And now P & Weingartner (2020) showed that the odd part
holds for sufficiently large numbers. Here is how we did it.

Let a be an odd number in the interval (x,2x]. Let n run over
practical numbers somewhat, but not much smaller than x1/2.
By the Bombieri–Vinogradov theorem there are many pairs
n,p where p ≤ x and p ≡ a (mod n). Then, since a > x ≥ p, we have
a − p > 0 and divisible by the practical number n; say a − p = bn.
Then, unless b is divisible by a large prime, the number bn is
practical and we have succeeded in representing a as the sum
of a prime and a practical. And we can use sieve methods to
show that most of the time b is not divisible by a large prime.

So, one might wonder if the full Margenstern conjecture could
be proved. That is, there are no exceptions, every odd number
> 1 is the sum of a prime and a practical.
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This would be difficult using our proof since the Bombieri–

Vinogradov theorem depends on Siegel’s theorem, and so is

ineffective. There are ways around this perhaps, but maybe it is

more promising to assume the Extended Riemann Hypothesis

(ERH). There we have the very nice prime number theorem for

residue classes:

∣π(x;n,a) − 1

ϕ(n)li(x)∣ ≤
√
x log(n2x), gcd(n,a) = 1.

A back-of-the-envelope calculation shows that assuming the

ERH, the Margenstern conjecture holds for all odd numbers

> e10,000.
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Tomás Oliveira e Silva told us he

checked up to 109, and there are no

exceptions. Well, it’s a start!

Actually, we found a cool method for numerically checking up

to much higher levels, though e10,000 is definitely out of reach.

Here’s what we do: Take a power of 2, say 2k and compute the

largest of the least primes for each a (mod 2k) as a varies over

odd numbers < 2k. As a toy example, say k = 4. Then the

largest of the least primes (mod 16) is 41 in the residue class

9. (The only residue classes to look at really are 1, 9, and 15.)
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So say p is the largest of these least primes. Linnik’s theorem
gives an upper bound for p, but numerically in practice, it will
not be very much larger than 2k, say < k22k. Once p is found,
we have done all of the work to verify the conjecture for odd
numbers a ∈ (p,22k+1). Indeed, if a is odd in this range, there is
a prime q ≡ a (mod 2k) with q ≤ p, and so a = q +2kb, with b < 2k+1.
So, 2kb is practical. (With our toy example, odds in the interval
(41,512) are representable.)

To find these primes, we check which residue classes (mod 2k)
are filled by primes below k22k, if we find all odd classes, we’re
done. (Actually, if we go merely to 3k2k, there should be
< 0.02% of unrepresented classes, and we can then search
separately over these.)

Using this, we have checked the conjecture up to 253 and could
go further.
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A famous conjecture of Landau is that between consecutive

squares there is always at least one prime. Could such a

theorem be proved for the practical numbers?

Yes, and this was done in 1984 by Hausman & Shapiro, and a

small improvement was found by Melfi in 1995. It would be

nice to prove that if ε > 0 is fixed and x is sufficiently large

depending on ε, then there is a practical number in the interval

(x,x + xε).

Miriam Hausman Harold N. Shapiro
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This would follow from the following possible argument. Let 2k

be the first power of 2 above xε/2 and consider the numbers b2k

where b ∈ (x/2k, (x + xε)/2k). If just one of these integers b is

xε/2-smooth, then b2k is practical and between x and x + xε.

There is a featured conjecture in Granville’s survey on smooth

numbers: Given numbers α,β in (0,1), if x is sufficiently large

depending on α,β, there is an xα-smooth number in the interval

(x,x + xβ).

So, this conjecture would imply that short intervals contain

practicals. Maybe there’s an unconditional proof?
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In conclusion:

Some people have used the forced idleness of the pandemic to

do great things, as witnessed by this stimulating Number

Theory Web Seminar.

One might say at least that I have been doing practical things.
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Thank You
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