1. Let $A = \mathbb{Z}$ and $p = p\mathbb{Z}$ with p a prime in \mathbb{Z}. We have characterized the localization $A_p = \mathbb{Z}_p$ as \{ $a/b \in \mathbb{Q} \mid a, b \in \mathbb{Z}, \ p \nmid b, \ \gcd(a, b) = 1$ \}.

(a) Characterize the unit group \mathbb{Z}_p^\times.

(b) Show that every nonzero element in \mathbb{Z}_p can be written uniquely as $p^\nu u$ where ν is a nonnegative integer and $u \in \mathbb{Z}_p^\times$. You may of course assume unique factorization in \mathbb{Z}.

(c) Characterize all the ideals of \mathbb{Z}_p, and confirm that \mathbb{Z}_p has a unique maximal ideal.

(d) Show that $\mathbb{Z}_p/p\mathbb{Z}_p \cong \mathbb{Z}/p\mathbb{Z}$.

2. Let A be a ring with identity, and let $2 A$. Consider the evaluation map $\varphi_\alpha : A[x] \to A$ whose domain is the polynomial ring $A[x]$, defined by $\varphi_\alpha(f) = f(\alpha)$.

(a) If A is commutative, show that φ_α is a ring homomorphism.

(b) If A is not commutative, give a counterexample. Note: Hamilton’s quaternions, defined on page 117 of your text, is a very nice ring. Also, while we have not yet formally defined polynomial rings yet, I have confidence you’ll do the right thing.

3. Consider the following popular argument in textbooks for showing a nonzero polynomial of degree n with coefficients in a field has at most n distinct roots in the field.

The proof typically proceeds by induction on n. Suppose that A is a field, and let $f(x) \in A[x]$ have degree $n > 0$, and let $\alpha \in A$ with $f(x) = (x - \alpha)g(x)$ for $g \in A[x]$ with degree of g equaling $n - 1$. Let β be a root of f and assume that $\alpha \neq \beta$. Then β is a root of g, and so by induction f has at most n distinct roots.

While the argument can be made rigorous in the case A is a field, it is rarely done. Given the exact argument as above, let A be a division ring (necessarily with identity). Find a counterexample to the assertion about the number of distinct roots, and explain where there is a gap in the argument in the case of a non-commutative division ring.

4. Let A be an integral domain, and $T \subset S$ two multiplicative subsets of A, with $0 \notin S$. Show that there is a natural embedding of $T^{-1}A \to S^{-1}A$.