Conservative Vector Fields

February 21, 2006
Conservative Vector Field

\(\mathbf{F} \) is a **conservative vector field** if there is a scalar function \(f \) such that

\[
\mathbf{F} = \nabla f
\]

The function \(f \) is called a **potential function** for the vector field.
Definitions

- A path C is **simple** if it doesn't cross itself.

- A region D is **open** if it doesn't contain any of its boundary points.

- A region D is **connected** if we can connect any two points in the region with a path that lies completely in D.
Path-Independent Line Integrals

A continuous vector field \(\mathbf{F} \) has \textbf{path-independent line integrals} if

\[
\int_{C_1} \mathbf{F} \cdot ds = \int_{C_2} \mathbf{F} \cdot ds
\]

for any two simple, piecewise \(C^1 \), oriented curves in the domain of \(\mathbf{F} \) with the same endpoints.
Path-Independent Property

Theorem: Let \mathbf{F} be a continuous vector field. Then \mathbf{F} has a path-independent line integral if and only if

$$\oint_C \mathbf{F} \cdot ds = 0$$

for every piecewise C^1, simple, closed curves C in the domain of \mathbf{F}.
Fundamental Theorem of Line Integrals

Suppose that \(C \) be a \(C^1 \) oriented path given by \(c(t), \ a \leq t \leq b \). And suppose that \(f \) is a function whose gradient vector, \(\nabla f \), is continuous on \(C \). Then,

\[
\int_C \nabla f \cdot ds = f(c(b)) - f(c(a))
\]

Note that \(c(a) \) represents the initial point on \(C \) while \(c(b) \) represents the final point on \(C \).
Simply-Connected

A region R in \mathbb{R}^2 or \mathbb{R}^3 is **simply-connected** if it consists of a single connected piece and if every simple closed curve C in R can be continuously shrunk to a point while remaining in R throughout the deformation.
Test for a vector field to be conservative

Let \mathbf{F} be a vector field of class C^1 whose domain is simply-connected region R in either \mathbb{R}^2 or \mathbb{R}^3. Then $\mathbf{F} = \nabla f$ for some scalar-valued function f of class C^2 on R if and only if

$$\nabla \times \mathbf{F} = 0$$

for all points of R.
Path-Independence and Conservative fields

If \mathbf{F} is a continuous vector field on an open connected region D and if $\int_C \mathbf{F} \cdot ds$ is independent of path (for any path in D) then \mathbf{F} is a conservative vector field on D.