Matrices and Coordinates

January 6, 2006
Matrix Multiplication

If A is an $m \times n$ matrix and B is an $n \times p$ matrix then the product AB is the matrix where the ij-th entry is obtained by taking the dot product of the i-th row of A with the j-th column of B.

NOTE: In order to define the product of A and B we require that the number of columns of A be equal to the number or rows of B. Otherwise, the product is undefined.
Linear Mappings

A **linear mapping** $F : \mathbb{R}^n \to \mathbb{R}^m$ is defined as

$$F(x) = Ax$$

for every x in \mathbb{R}^n where A is an $m \times n$ constant matrix.

Linear mappings are **VERY** important in all applications in science and engineering and in mathematics.
Properties of linear transformations

If $F : \mathbb{R}^n \to \mathbb{R}^m$ is a linear mapping then for any x, y in \mathbb{R}^n and any scalar c we have

$$F(x + y) = F(x) + F(y)$$

$$F(c x) = c F(x).$$
Coordinate Systems

The coordinates of a point are the components of a tuple of numbers used to represent the location of the point in the plane or space.

For 2-dimensions:

- Choose an “origin” - (0,0).
- **Cartesian or rectangular coordinates** (x, y)

x-horizontal and y-vertical direction
Polar coordinates

\((r, \theta)\): \(r\) - distance from origin and \(\theta\) - angle from \(x\)-axis, \(0 \leq \theta < 2\pi\).

If we want to describe every point uniquely we require that \(r \geq 0\) and \(0 \leq \theta < 2\pi\).

NOTE: In polar coordinates you think that every point except the origin is on a circle of radius \(r\).

Polar coordinates are useful in doing computations with curves that have symmetry around the origin.
Relation between polar and cartesian coordinates

Polar to Cartesian:
\[x = r \cos \theta \]
\[y = r \sin \theta \]

Cartesian to Polar:
\[r = \sqrt{x^2 + y^2} \]
\[\theta = \tan^{-1} \left(\frac{y}{x} \right) \]
Cylindrical Coordinates

These are for 3D: \((r, \theta, z)\) and we usually think that every point in space not on the \(z\)-axis is on a cylinder.

They are good for studying objects possessing an axis of symmetry.

Cartesian to Cylindrical

\[
\begin{align*}
x &= r \cos \theta \\
y &= r \sin \theta \\
z &= z
\end{align*}
\]

Cylindrical to Cartesian

\[
\begin{align*}
r &= \sqrt{x^2 + y^2} \\
\theta &= \tan^{-1}\left(\frac{y}{x}\right) \\
z &= z
\end{align*}
\]
Spherical Coordinates

- These coordinates are also to describe a point in 3D: \((\rho, \phi, \theta)\). They are useful to study objects that have a center of symmetry.

- Here we think as every point except \((0,0,0)\) lies on a sphere.

- \(\rho\) - distance from the origin.
 \(\phi\) - longitude and takes values \(0 \leq \phi \leq \pi\).
 \(\theta\) - latitude and takes values \(0 \leq \theta < 2\pi\).
Relation between cartesian and spherical

Spherical to cartesian:
\[x = \rho \sin \phi \cos \theta \]
\[y = \rho \sin \phi \sin \theta \]
\[z = \rho \cos \phi \]

Cartesian to spherical:
\[\rho = \sqrt{x^2 + y^2 + z^2} \]
\[\phi = \tan^{-1}(\sqrt{x^2 + y^2}/z) \]
\[\theta = \tan^{-1}(y/x) . \]
Relation between cylindrical and spherical

Spherical to cylindrical:
\[r = \rho \sin \phi \]
\[z = \rho \cos \phi \]
\[\theta = \theta. \]

Cylindrical to spherical:
\[\rho = \sqrt{r^2 + z^2} \]
\[\phi = \tan^{-1}(r/z) \]
\[\theta = \theta. \]