Functions in several variables and limits

January 9, 2006
Functions

Any function has three features:

- A **domain** set X;
- A **codomain** set Y;
- A **rule of assignment** - a rule that assign to each element x in X of the domain a “unique” element $f(x)$ in Y (the codomain).
Scalar-valued functions

Scalar valued functions are functions such that the domain is $X \subseteq \mathbb{R}^n$ and the codomain is \mathbb{R} or a subset of \mathbb{R}.

REMARK: Review the definitions of range, one-to-one and onto.
The Graph of a function

Let \(f : \mathbb{R}^n \to \mathbb{R} \) be a scalar valued function. Let \(x = (x_1, x_2, \ldots, x_n) \), then the graph of \(f \) is:

\[
\text{Graph} f = \{ (x, f(x)) \mid x = (x_1, \ldots, x_n) \in \mathbb{R}^n \}
\]

For example if \(f : \mathbb{R}^2 \to \mathbb{R} \), then the graph of \(f \) is the set of points in \(\mathbb{R}^3 \) that look like \((x, y, f(x, y)) \), where \((x, y)\) is in \(\mathbb{R}^2 \).
Level Curves

Let f be a function of two variables and let c be a constant. The set of all (x, y) in the plane such that $f(x, y) = c$ is called a level curve of f with value c.
Definition of the limit

Definition: (Intuitive) Let \(f : \mathbb{R}^n \rightarrow \mathbb{R}^m \), then

\[
\lim_{x \rightarrow a} f(x) = L
\]

means that we can make \(\|f(x) - L\| \) arbitrarily small (close to zero) by keeping \(\|x - a\| \) sufficiently small (but not zero).
Rigorous definition of limit

Definition: Let $f : X \subseteq \mathbb{R}^n \rightarrow \mathbb{R}^m$ be a function. Then

$$\lim_{x \rightarrow a} f(x) = L$$

means that given $\epsilon > 0$, you can find a $\delta > 0$ (often depending on ϵ) such that if $x \in X$ and $0 < \|x - a\| < \delta$, then $0 < \|f(x) - L\| < \epsilon$
Properties of limits

1. If \(\lim_{x \to a} f(x) = L \) and \(\lim_{x \to a} g(x) = M \) then \(\lim_{x \to a} (f + g)(x) = L + M \)

2. If \(\lim_{x \to a} f(x) = L \), then \(\lim_{x \to a} kf(x) = kL \), where \(k \) is a scalar.

3. if \(\lim_{x \to a} f(x) = L \) and \(\lim_{x \to a} g(x) = M \) then \(\lim_{x \to a} (fg)(x) = LM \)

4. If \(\lim_{x \to a} f(x) = L \) and \(g(x) \neq 0 \) for \(x \in X \), and \(\lim_{x \to a} g(x) = M \neq 0 \), then \(\lim_{x \to a} (f/g)(x) = L/M \).
Definition: Let \(f : X \subseteq \mathbb{R}^n \rightarrow \mathbb{R}^m \) and let \(a \in X \). Then, \(f \) is \textbf{continuous at} \(a \) if

\[
\lim_{x \rightarrow a} f(x) = f(a).
\]

\(f \) is called \textbf{continuous} if it is continuous at every point of the domain \(X \).
• The sum \(f + g \) of two continuous functions is a continuous function.

• The scalar multiple of a continuous function \(kf \) is continuous.

• The product \(fg \) and the quotient \(f/g \) (when defined) of two continuous functions is continuous.