1. Let \(f, g : \mathbb{R}^3 \to \mathbb{R} \) and \(\varphi : \mathbb{R}^3 \to \mathbb{R}^3 \) be functions defined by \(f(x, y, z) = \sqrt[3]{9y^2 + 2(x + z)} \), \(\varphi(x, y, z) = (z^2 - 2xz, y^3/3, x^2 - 2xz) \), and \(g = f \circ \varphi \). Let also \(F = \{ (x, y, z) \mid f(x, y, z) = -2 \} \) and \(S = \{ (x, y, z) \mid g(x, y, z) = -2 \} \) be surfaces in \(\mathbb{R}^3 \).

 a) Prove that \(\varphi \) maps \(S \) into \(F \), i.e. \(\varphi(S) = F \).

 b) Find all points \(P \in S \) such that the tangent plane to \(S \) at \(P \) and the tangent plane to \(F \) at \(\varphi(P) \) are parallel. Justify your answer.

2. Exercise 16 p.192 from the textbook.

5. Exercise 18 p.223 from the textbook. Justify your answer.

