Problem

Show that

\[b(n, p, j) = \frac{p}{q} \left(\frac{n - j + 1}{j} \right) b(n, p, j - 1) , \]

for \(j \geq 1 \). Use this fact to determine the value or values of \(j \) which give \(b(n, p, j) \) its greatest value.
Problem

Show that the number of ways that one can put n different objects into three boxes with a in the first, b in the second, and c in the third is $n!/(a!b!c!)$.
Problem

Prove that the probability of exactly n heads in $2n$ tosses of a fair coin is given by the product of the odd numbers up to $2n - 1$ divided by the product of the even numbers up to $2n$.
Conditional Probability

10/04/2005
Example

Three candidates A, B, and C are running for office. We decided that A and B have an equal chance of winning and C is only 1/2 as likely to win as A. Let A be the event “A wins,” B that “B wins,” and C that “C wins.” Hence, we assigned probabilities $P(A) = \frac{2}{5}$, $P(B) = \frac{2}{5}$, and $P(C) = \frac{1}{5}$.

Suppose that before the election is held, A drops out of the race. What are the values for $P(B | A)$ and $P(C | A)$?
Definition

Let $\Omega = \{\omega_1, \omega_2, \ldots, \omega_r\}$ be the original sample space with distribution function $m(\omega_j)$ assigned. Suppose we learn that the event E has occurred.

- If a sample point ω_j is not in E, we want $m(\omega_j|E) = 0$.
- For ω_k in E, we should have the same relative magnitudes that they had before we learned that E had occurred:

$$m(\omega_k|E) = cm(\omega_k).$$
But we must also have

$$\sum_{E} m(\omega_k|E) = c \sum_{E} m(\omega_k) = 1.$$

Thus,

$$c = \frac{1}{\sum_{E} m(\omega_k)} = \frac{1}{P(E)}.$$
Definition 1. The conditional distribution given E is the distribution on Ω defined by

$$m(\omega_k | E) = \frac{m(\omega_k)}{P(E)}$$

for ω_k in E, and $m(\omega_k | E) = 0$ for ω not in E.
Then, for a general event F,

$$P(F|E) = \sum_{F \cap E} m(\omega_k|E) = \sum_{F \cap E} \frac{m(\omega_k)}{P(E)} = \frac{P(F \cap E)}{P(E)}.$$

We call $P(F|E)$ the conditional probability of F occurring given that E occurs.
Example

Let us return to the example of rolling a die. Recall that F is the event $X = 6$, and E is the event $X > 4$. Note that $E \cap F$ is the event F. So, the above formula gives

$$P(F|E) = \frac{P(F \cap E)}{P(E)}$$

$$= \frac{1/6}{1/3}$$

$$= \frac{1}{2}.$$
Example

We have two urns, I and II. Urn I contains 2 black balls and 3 white balls. Urn II contains 1 black ball and 1 white ball. An urn is drawn at random and a ball is chosen at random from it. We can represent the sample space of this experiment as the paths through a tree.
\[
\begin{array}{cccc}
\text{Urn} & \text{Color of ball} & \omega & p(\omega) \\
\text{I} & 2/5 & b & \omega_1 & 1/5 \\
 & 3/5 & w & \omega_2 & 3/10 \\
\text{II} & 1/2 & b & \omega_3 & 1/4 \\
 & 1/2 & w & \omega_4 & 1/4 \\
\end{array}
\]
• Let B be the event “a black ball is drawn,” and I the event “urn I is chosen.” Then the branch weight $2/5$, which is shown on one branch in the figure, can now be interpreted as the conditional probability $P(B|I)$.

• What is $P(I|B)$?
Bayes Probabilities

We have just calculated the inverse probability that a particular urn was chosen, given the color of the ball. Such an inverse probability is called a Bayes probability.
<table>
<thead>
<tr>
<th>Color of ball</th>
<th>Urn</th>
<th>ω</th>
<th>$p(\omega)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
<td>ω_1</td>
<td>1/5</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>ω_3</td>
<td>1/4</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>ω_2</td>
<td>3/10</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>ω_4</td>
<td>1/4</td>
</tr>
</tbody>
</table>

(start)

- **B**:
 - Urn I: ω_1, $p(\omega_1) = 1/5$
 - Urn II: ω_3, $p(\omega_3) = 1/4$

- **W**:
 - Urn I: ω_2, $p(\omega_2) = 3/10$
 - Urn II: ω_4, $p(\omega_4) = 1/4$
The Monty Hall problem

Suppose you’re on Monty Hall’s *Let’s Make a Deal!* You are given the choice of three doors, behind one door is a car, the others, goats. You pick a door, say 1, Monty opens another door, say 3, which has a goat. Monty says to you “Do you want to pick door 2?” Is it to your advantage to switch your choice of doors?

Question: What is the conditional probability that you win if you switch, given that you have chosen door 1 and that Monty has chosen door 3.
Door opened by Monty

Path probabilities

Placement of car

Door chosen by contestant

1/18

1/9

1/9

1/9
Problem

Assume that E and F are two events with positive probabilities. Show that if $P(E|F) = P(E)$, then $P(F|E) = P(F)$.
Problem

A die is rolled twice. What is the probability that the sum of the faces is greater than 7, given that

1. the first outcome was a 4?
2. the first outcome was greater than 3?
3. the first outcome was a 1?
4. the first outcome was less than 5?