The Invertible Matrix Theorem

Let A be a square $n \times n$ matrix. Then the following statements are equivalent.

a. A is an invertible matrix
b. A is row equivalent to the $n \times n$ identity matrix
c. A has n pivot positions
e. The columns of A form a linearly independent set
h. The columns of A span \mathbb{R}^n

m. The columns of A form a basis of \mathbb{R}^n

n. $\text{Col } A = \mathbb{R}^n$
o. $\dim \text{Col } A = n$
p. $\text{rank } A = n$
q. $\text{Nul } A = \{0\}$
r. $\dim \text{Nul } A = 0$
s. The number 0 is not an eigenvalue of A
t. $\det A \neq 0$