The Invertible Matrix Theorem

Let A be a square $n \times n$ matrix. Then the following statements are equivalent.

a. A is an invertible matrix
b. A is row equivalent to the $n \times n$ identity matrix
c. A has n pivot positions
d. The equation $Ax = 0$ has only the trivial solution
e. The columns of A form a linearly independent set
f. The linear transformation $x \mapsto Ax$ is one-to-one
g. The equation $Ax = b$ has at least one solution for each $b \in \mathbb{R}^n$
h. The columns of A span \mathbb{R}^n
i. The linear transformation $x \mapsto Ax$ maps \mathbb{R}^n onto \mathbb{R}^n
j. There is an $n \times n$ matrix C such that $CA = I$
k. There is an $n \times n$ matrix D such that $AD = I$
l. A^T is an invertible matrix
m. The columns of A form a basis of \mathbb{R}^n

n. $\text{Col } A = \mathbb{R}^n$
o. $\text{dim Col } A = n$
p. $\text{rank } A = n$
q. $\text{Nul } A = \{0\}$
r. $\text{dim Nul } A = 0$
s. The number 0 is not an eigenvalue of A
t. $\det A \neq 0$