Math 22 Workshop IV
Due May 8, 2006

INSTRUCTIONS: You are encouraged to work on these problems in a group of three to four people, but you may work alone if you insist. Each group should write up a single solution and turn their paper in in class on Monday.

1. Let $D : \mathbb{P}_4 \rightarrow \mathbb{P}_4$ be the linear transformation given by

$$D(p(t)) = (1 - t^2)p''(t) - 2tp'(t) + 20p(t).$$

(a) Find the matrix $\beta[D]_{\beta}$ for D relative to the basis $\beta = \{1, t, t^2, t^3, t^4\}$ for \mathbb{P}_4.

(b) Use your answer above and coordinates to find a basis for the kernel and range of D.

(c) Using your answers above, show that there is, up to a scalar multiple, only one polynomial p of degree at most 4 which is a solution to the differential equation

$$(1 - t^2)p'' - 2tp + 20p = 0.$$

(d) Use your analysis above to produce a polynomial q of degree at most 4 so that the differential equation

$$(1 - t^2)p'' - 2tp + 20p = q$$

has no polynomial solution of degree at most 4.

You may have learned the following result in high school.

Theorem 1 If $p(t)$ is a polynomial and if a is a real number such that $p(a) = 0$, then there is a polynomial q such that $p(t) = (t - a)q(t)$.

In the next exercise, we want to give a proof of this for polynomials of degree at most 3.

2. Let $a \in \mathbb{R}$ and define $T : \mathbb{P}_3 \rightarrow \mathbb{R}$ by $T(p) := p(a)$. Let $\beta = \{1, t, t^2, t^3\}$ be the usual basis for \mathbb{P}_3, and let $\gamma = \{1\}$ be the standard basis for \mathbb{R}.

(a) Use the matrix $\gamma[T]_{\beta}$ of T relative to the bases β and γ to find a basis for the kernel and range of T.

(b) Show directly (without using Theorem 1 above) that every polynomial in your basis for the kernel of T is divisible by $t - a$. Conclude that every polynomial in the kernel of T is divisible by $t - a$.

(c) Note that part (b) gives a proof of Theorem 1 for polynomials of degree at most 3.