5.3 (2 points) \(\begin{bmatrix} 1 & 15 \, 90 \end{bmatrix} \)

10 (2 points) \(P = \begin{bmatrix} 1 & 2 \end{bmatrix}, \quad D = \begin{bmatrix} 5 & 0 \\ 0 & 2 \end{bmatrix} \)

12 (2 points) \(P = \begin{bmatrix} 1 & -1 & -1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}, \quad D = \begin{bmatrix} 8 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix} \).

26 (2 points) Yes, if the third eigen-space is only one-dimensional. In this case, the sum of the dimensions of the eigenspaces will be six, whereas the matrix is 7x7.

See Theorem 7(b).

28 (2 points) If \(A \) has \(n \) linearly independent eigenvectors, then by the Diagonalization Theorem,

\[A = PDP^{-1} \text{ for some invertible } P \text{ and diagonal } D. \]

Then \(A^T = (PDP^{-1})^T = (P^{-1})^TDP^T = (P^T)^{-1}DP^T = OD_0D^{-1}, \)

where \(D = (P^T)^{-1}. \)

Thus \(A \) is diagonalizable.

By the Diagonalization Theorem, the columns of \(D \) are \(n \) linearly independent eigenvectors of \(A^T. \)

4. 9 (12 points) Each food will be preferred equally, because \(\begin{bmatrix} 1/3 \\ 1/3 \\ 1/3 \end{bmatrix} \) is the steady-state vector.

17 (3 points) a. The entries in a column of \(P \) sum to 1. A column in the matrix \(P^{-1} \) has the same entries as in \(P \) except that one of the entries is decreased by 1.

Hence each column sum is 0.

b. By (a), the bottom row of \(P^{-1} \) is the negative of the sum of other rows.
C. By (b) and the Gram-Schmidt Theorem, the bottom row of $P: \tilde{A}$ can be removed and the remaining
(x-1) rows will still span the row space.

1. By the Rank Theorem and (c), the dimension of the column space of $P: \tilde{A}$ is less than or
Hence the null space is nontrivial.

using $\text{null}(P = \text{eye}(3), r_r)$

then dividing by the sum of the column vec.

and b have the highest rank. (jointly highest)

2. It will increase, approaching 1, so b can beat the system, hereby.

3. $P = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$, steady state $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$, ie c gets all the ranking.

This is not fair!

4. $A_{\text{steady state}} = \begin{bmatrix} 0.111 & 1/3 \\ 0.111 & 1/3 \\ 0.111 & 1/3 \end{bmatrix}$

5. (Bonus): if $x = dPx + (1-d)\bar{e}$ the column sums are $S = dS + (1-d)\bar{e}$.

$S = \text{sum}(x)$, unknown.

\[S = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \]

5.6 (12 points) Saddle point. Eigenvectors: 1.1, 0.8. Convergent region: line through $(0,0)$ and $(0,1)$

6.1 (12 points) $\begin{bmatrix} 0.8 \\ 0.6 \end{bmatrix}$

14 (points) $2\sqrt{17}$

Note an eigenvector issue - is it a lin. system or an eigenvector??

$(I-dP)x = (1-d)e$ is lin. system $Ax = b$.

But \bar{e} can be written $M\bar{x}$ where $M = \begin{bmatrix} y_1 & y_2 & \cdots \\ y_2 & y_3 & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix}$, since \bar{x} is a prob. vector

Thus it is also an eigenvector problem!

Note the matrix M corresponds to randomly jumping anywhere in the web.