For each described operation, find standard matrix A, and whether T is onto and one-to-one.

a) $T(x_1, x_2) = (3x_1, -2x_1 + x_2, -x_2)$

$T: \mathbb{R}^2 \to \mathbb{R}^3$ (What are u_1, u_2?)

What size?

b) T is reflection about line $x_2 = x_1$

($T: \mathbb{R}^2 \to \mathbb{R}^2$)

A =

tonner?

one-to-one?

c) $T: \mathbb{R}^3 \to \mathbb{R}^2$

projects the point (x_1, y_2) downward vertically onto the (x,y) plane

(the shadow of a point under the midday sun).

A =
tonner?

one-to-one?
For each described operation, find standard matrix A, and whether T is onto and one-to-one.

\(T(x, y, z) = (3x, -2x, x, -z) \)

$T: \mathbb{R}^3 \to \mathbb{R}^4$ (What are v, w, z?)

2 vector cannot span \mathbb{R}^3

since would need a pivot in each of 3 rows for this.

\(A = \begin{bmatrix} 3 & 0 \\ -2 & 1 \\ 0 & -1 \end{bmatrix} \)

onto? No, since $Ax = b$ not consistent for all b in \mathbb{R}^3.

one-to-one? Yes, since when $Ax = b$ is consistent, it is unique (b' is image of single x).

\(T: \mathbb{R}^2 \to \mathbb{R}^2 \)

is reflection about line $x_2 = x_1$.

\(A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \)

onto? Yes since pivot in every row.

one-to-one? Yes since there are no free vars in $Ax = b$.

\(T: \mathbb{R}^3 \to \mathbb{R}^3 \)

projects the point (x_1, y_2, z_3) down vertically onto the (x_1, y_2) plane.

(Shadow of a point under the wighly sun).

\(A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \) in \mathbb{R}^3.

onto? Yes, since pivot in every row.

one-to-one? No, since in $Ax = b$, x_3 is free var, not unique.