For the multiple choice questions, we omit the choices and just calculate the answer.

1. For the function
\[f(x) = \frac{x - 1}{x^2} = x^{-1} - x^{-2}, \]
what is its domain?

Solution. This function is defined everywhere except \(x = 0 \); therefore, the domain is \((-\infty, 0) \cup (0, \infty)\), which is choice **B**.

2. For the same function as question 1, what are its vertical and horizontal asymptotes?

Solution. The line \(x = 0 \) is evidently a vertical asymptote, because \(f(x) \) is not defined there, and \(\lim_{x \to 0} f(x) = -\infty \). For horizontal asymptotes, we analyze \(\lim_{x \to \infty} f(x) \) and \(\lim_{x \to -\infty} f(x) \), which are both equal to 0. Therefore \(y = 0 \) is a horizontal asymptote, and so choice **A** is correct.

3. A weight that is suspended by a spring of length 1 meter bobs up and down with its height above the floor at time \(t \) seconds given by the formula
\[h(t) = 2 + \frac{1}{\pi} \sin(\pi t). \]

Note that the function \(h(t) \) has the derivative
\[h'(t) = \cos(\pi t). \]

At \(t = 1/2 \) seconds the object is

Solution. **C**, at its highest point. Indeed, \(h(t) \) is largest (and hence the object is highest) when \(\sin \pi t = 1 \), which occurs precisely when \(t = 1/2, 5/2, 9/2, \ldots \).

4. For the same situation as problem 3, but at time \(t = 1 \) second, the object is

Solution. **B**, moving its fastest downward. A graph of the function \(h \) will show that the object is moving downwards at time \(t = 1 \); also, the fact that \(h'(1) = \)
\(\cos(\pi) = -1 \) indicates that the object is moving downwards. As a matter of fact, the object is moving its fastest downwards, because \(-1\) is the most negative value that \(h'(t) \) takes.

5. The function \(f(x) = \cos x + \sin x + 1 \) is

\textit{Solution.} C, neither even nor odd. \(f(x) \) certainly is not odd, because \(f(0) = 2 \neq -f(0) \). Also, \(f(x) \) is not even, since \(f(\pi/2) = 2 \), while \(f(-\pi/2) = 0 \), which are not equal to each other.

6. Let \(f(x) = \ln(2x - 1) \) and \(g(x) = e^{2x} \). Then \(g(f(x)) \) is

\textit{Solution.} D, \(4x^2 - 4x + 1 \). For readability, we will write \(\exp \) for \(e^n \). We have

\[g(f(x)) = \exp(2 \ln(2x - 1)). \]

We can factor \(x^2 + 2x + 1 = (x + 1)^2 \), so

Since \(2 \ln(2x - 1) = \ln(2x - 1)^2 \), we have

\[g(f(x)) = \exp(\ln(2x - 1)^2) = (2x - 1)^2 = 4x^2 - 4x + 1. \]

7. Solve for \(x \), expressing your answer in terms of the natural logarithm function:

\[8^{x+2} = 5^{-x}. \]

\textit{Solution.} Take the natural log of both sides to obtain

\[\ln 8^{x+2} = \ln 5^{-x} \iff (x + 2) \ln 8 = -x \ln 5 \]

Now we solve for \(x \) in the usual way:

\[x(\ln 8 + \ln 5) = -2 \ln 8 \Rightarrow x = \frac{-2 \ln 8}{\ln 8 + \ln 5} \]

We can simplify the denominator to \(\ln 40 \), using \(\ln a + \ln b = \ln ab \). Therefore, the correct choice is C.

8. Find \(f'(x) \) when \(f(x) = 3x^2 - 5x + \sqrt{3} \).

\textit{Solution.} Use the power rule to find \(f'(x) = 6x - 5 \), which is choice A.

9. Consider the function \(f(x) = -x + 1 \), for \(x \leq 1 \), and \(x^2 \), for \(x > 1 \). Which of the following statements is true?

\textit{Solution.} C, that \(x = 1 \) is a discontinuity of \(f \) which is not removable, is correct. Indeed, \(\lim_{x \to 1^-} f(x) = 0 \), while \(\lim_{x \to 1^+} f(x) = 1 \). Therefore, no definition of \(f(x) \) at \(x = 1 \) will make \(f(x) \) continuous, since \(\lim_{x \to 1} f(x) \) does not even exist.
10. For the limit
\[\lim_{x \to 2} \frac{x^2 - 3x + 2}{x^2 - 4}, \]
which of the following is true?

Solution. D, the limit is 1/4, is correct. Notice that the numerator and denominator of the function are both 0 at \(x = 2 \), so we factor both of them and notice that the term \(x - 2 \) cancels:

\[
\frac{x^2 - 3x + 2}{x^2 - 4} = \frac{(x - 2)(x - 1)}{(x - 2)(x + 2)} = \frac{x - 1}{x + 2}
\]

where the rightmost equality holds whenever \(x \neq 2 \). Therefore, the limit of the original fraction as \(x \to 2 \) is \((2 - 1)/(2 + 2) = 1/4\).

11. Find the derivative of the function: \(f(x) = \sin(3x + 1) + \cos(2x - 3) \).

Solution. Use the chain rule, and the formulas for the derivative of \(\sin \) and \(\cos \), to obtain

\[f'(x) = 3 \cos(3x + 1) - 2 \sin(2x - 3) \]

which is choice E, none of the above.

12. Find \(f'(x) \) if \(f(x) = \tan \frac{x + 1}{x - 1} \).

Solution. We use the chain rule to find

\[f'(x) = \sec^2 \frac{x + 1}{x - 1} \cdot \left(\frac{x + 1}{x - 1} \right)' \]

The derivative of \((x + 1)/(x - 1) \) can be evaluated using the quotient rule:

\[\left(\frac{x + 1}{x - 1} \right)' = \frac{1 \cdot (x - 1) - 1 \cdot (x + 1)}{(x - 1)^2} = \frac{-2}{(x - 1)^2} \]

This gives choice C. We could have also calculated the derivative of \((x + 1)/(x - 1) \) by rewriting it as follows:

\[\frac{d}{dx} x + 1 = \frac{d}{dx} \left(1 + \frac{2}{x - 1} \right) = \frac{-2}{(x - 1)^2} \]

13. The function \(f(x) = \sqrt{x} \) has the derivative \(f'(x) = 1/(2\sqrt{x}) \). Find the equation of the tangent line to the graph of \(y = f(x) \) at the point (4, 2).

Solution. The tangent line in question passes through the point \((4, 2) \) and has slope equal to \(f'(4) \). Therefore, the slope is \(f'(4) = 1/4 \), and the equation of the tangent line can be found using the point-slope form for a line:
\[y - 2 = 1/4(x - 4) \]

If we wanted to, we could write this in the form \(y = x/4 + 1 \).

14. Carefully work out the derivative of \(f(x) = 2x^2 - 3x \) using the formula

\[
f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}
\]

Solution. Plug in the expression for \(f(x) \) into the definition of \(f'(x) \):

\[
f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}
\]

\[
= \lim_{h \to 0} \frac{2(x + h)^2 - 3(x + h) - (2x^2 - 3x)}{h}
\]

We expand out the terms in the numerator and simplify:

\[
2(x+h)^2-3(x+h)-(2x^2-3x) = 2(x^2+2hx+h^2)-3x-3h-2x^2+3x = 4hx+2h^2-3h
\]

Therefore, \(f'(x) \) is equal to

\[
f'(x) = \lim_{h \to 0} \frac{4hx + 2h^2 - 3h}{h} = \lim_{h \to 0} \frac{4x - 3 + 2h}{h} = 4x - 3.
\]

This is in agreement with what the power rule would give us.