Hour Exam #1
Math 3
Oct. 10, 2012

Name (Print): ____________________________

Last First

On this, the first of the two Math 3 hour-long exams in Fall 2012, and on the second
hour-exam, and on the final examination I will work individually, neither giving nor
receiving help, guided by the Dartmouth Academic Honor Principle.

Signature: __________________________________

Instructor (circle):

Lahr (Sec. 1, 8:45) Diesel (Sec. 2, 10:00)
Dorais (Sec. 3, 11:15) Dorais (Sec. 4, 12:30)
Wolff (Sec. 5, 1:45)

Instructions: You are not allowed to use calculators, books, or notes of any kind.
All of your answers must be marked on the Scantron form provided or entered on
the test, depending on the problem. Take a moment now to print your name and
section clearly on your Scantron form and on page 1 of your exam booklet and sign the
affirmation. You may write on the exam, but you will only receive credit on Scantron
(multiple-choice) problems for what you write on the Scantron form. At the end of the
exam, you must turn in both your Scantron form and your exam booklet. There are
15 multiple-choice problems worth 4 points each and 3 long-answer written problems
worth a total of 40 points. Check to see that you have 11 pages of questions plus the
cover page for a total of 12 pages.

Non-multiple choice questions:

<table>
<thead>
<tr>
<th>Problem</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>
For this page, let \(f(x) = \frac{x + 4}{x^2 + x - 12} \).

1. What is \(\lim_{x \to -\infty} f(x) \)?

 (a) 0
 (b) \(-\infty\)
 (c) \(-1\)
 (d) The limit does not exist
 (e) None of the above

2. What is the domain of \(f(x) \)?

 (a) \((-\infty, -4) \cup (-4, \infty)\)
 (b) \((-\infty, \infty)\)
 (c) \((-\infty, -4) \cup (-4, 3) \cup (3, \infty)\)
 (d) \((-\infty, -4) \cup (-4, 6) \cup (6, \infty)\)
 (e) None of the above
For this page, let \(f(x) = \frac{x^3 + 4x^2 + 4x}{(x + 2)(x + 3)} \).

3. What are the vertical asymptotes of \(f \)?

(a) \(x = -3 \)
(b) \(x = 2 \) and \(x = 3 \)
(c) \(x = 2 \) and \(x = -3 \)
(d) \(y = \sqrt[3]{-8} \)
(e) None of the above

4. What are the horizontal asymptotes of \(f \)?

(a) \(y = -2 \)
(b) \(y = 4/3 \)
(c) \(y = 0 \)
(d) \(y = -2 \) and \(y = -3 \)
(e) None of the above
5. Suppose the graph of the function $f(x)$ shown below has three linear pieces and one parabolic (polynomial of degree 2) piece

Of the following graphs, which could be the graph of $f'(x)$?

(a) (c) \hspace{2cm} (b) (d)

(e) None of the above
6. Again, suppose the graph of the function $f(x)$ looks like

Of the following graphs, which is the graph of $-f(x + 1)$?

(a) (c) (b) (d) (e) None of the above
For this page, let \(f(x) = \frac{1}{x} \) and \(g(x) = \sqrt{3 - \sqrt{2 - x}} \).

7. What is the domain of \(f(g(x)) \)?
 (a) \(x \leq 2 \)
 (b) \(-7 < x \leq 2\)
 (c) \(2 \leq x < 11 \)
 (d) \(x \neq 0 \)
 (e) \(x < 2 \) or \(x > 11 \)

8. What is \(g^{-1}(x) \)?
 (a) \(\sqrt{3 - \sqrt{2 - 1/x}} \)
 (b) \(-x^2 + 6x - 7 \)
 (c) \(5 - x^2 \)
 (d) \(2 - (x^2 - 3)^2 \)
 (e) \(\frac{1}{\sqrt{3 - \sqrt{2 - x}}} \)
9. Let

\[f(x) = \begin{cases}
 x + 2 & \text{if } x < -1, \\
 -x & \text{if } -1 < x < 2, \\
 2 - 2x & \text{if } 2 \leq x.
\end{cases} \]

Which of the following statements about \(f(x) \) is false?

(a) \(f(x) \) is continuous on its domain
(b) \(f(x) \) is differentiable on its domain
(c) \(f(x) \) has a continuous extension at \(x = -1 \)
(d) \(\lim_{x \to 2} f(x) = -2 \)
(e) \(f'(0) = -1 \)

10. A particle is moving along a straight line. After 2 seconds, it is located at 3.0 m moving at a rate of 3.0 m/s. After 4 seconds, it is located at 5.0 m moving at a rate of 2.0 m/s. Which of the following necessarily happened at some point between 2 and 4 seconds?

(a) The particle was located at 2.0 m
(b) The particle was moving at a rate of 1.0 m/s
(c) The particle was moving at a rate of 0.5 m/s
(d) The particle was accelerating at a rate of 0.5 m/s²
(e) The particle was accelerating at a rate of -1.0 m/s²
11. What is the range of $f^{-1}(x)$ if $f(x) = \ln(2x - 10)$?

(a) $(5, \infty)$
(b) $(0, 5)$
(c) $(-\infty, \infty)$
(d) $(-\infty, 5) \cup (5, \infty)$
(e) None of the above

12. Suppose

$$f(x) = \begin{cases} ae^x & \text{if } x > \ln 2, \\ xe^x + a & \text{if } x \leq \ln 2. \end{cases}$$

For which value of a is $f(x)$ continuous?

(a) $\ln 4$
(b) $\ln \sqrt{8}$
(c) $\ln 2$
(d) $-2 \ln 4$
(e) $\ln e^2$
13. Suppose \(f(x) = \frac{\tan(x)}{x^3} + 3x \). Then \(f'(x) \) equals:

(a) \(\frac{3x^2 \tan(x) - x^3 \sec^2(x)}{x^6} \)

(b) \(\frac{x^3 \tan(x) + 3x^2 \sec^2(x)}{x^6} + 3 \)

(c) \(\frac{x^3 \sec^2(x) - 3x^2 \tan(x)}{x^6} + 3 \)

(d) \(\frac{\sec^2(x)}{x^3} + 3 \)

(e) None of the above

14. Suppose \(f(x) = \ln(g(x)\sqrt{x}) \) where \(g \) is a differentiable function with \(g(3) = \sqrt{3} \) and \(g'(3) = \sqrt{3}/2 \). Then \(f'(3) \) equals:

(a) 2/3

(b) \(-2/3\)

(c) 1/3

(d) \(2\sqrt{3}\)

(e) None of the above
15. The tangent line to the curve $y^2 = xy + 4$ at $(3, 4)$ is:

(a) $-8 = 4x - 5y$
(b) $3 = -5x + 3y$
(c) $12 = x + 3y$
(d) $-5 = -x + 4y$
(e) None of the above
16. Let \(f(x) = x^2 + x \).

(a) Compute the derivative of \(f(x) \) using the limit definition of the derivative. Show all of your work and explain your steps to receive any credit.

(b) What is the equation of the tangent line to \(f(x) \) at \((3, 12)\)?
17. Sketch the following function on the axes below.

\[f(x) = \begin{cases}
2 - x & \text{if } -2 \leq x < 0 \\
\sqrt{x + 4} & \text{if } 0 \leq x < 5
\end{cases} \]

Is \(f(x) \) differentiable at \(x = 0 \)? Choose the best answer.

(a) Yes, because \(f(x) \) is continuous at \(x = 0 \).
(b) Yes, because \(\lim_{x \to 0^-} f(x) = \lim_{x \to 0^+} f(x) \).
(c) No, because there is a vertical tangent line at \(x = 0 \).
(d) No, because \(f(x) \) is a piecewise defined function.
(e) No, because \(\lim_{h \to 0} \frac{f(0 + h) - f(0)}{h} \) does not exist.
18. Let $f(x)$ be the function graphed below.

(a) For what values of x is $f(x)$ discontinuous? List the x values only.

(b) Evaluate the following limits:

$$\lim_{x \to -1^{-}} f(x) =$$

$$\lim_{x \to 0^{+}} f(x) =$$

$$\lim_{x \to 1^{-}} ((x - 1)^2 f(x)) =$$

$$\lim_{x \to 2^{+}} (f(x)f(-x)) =$$

(c) Where does $f(x)$ have removable discontinuities? List the x values for these discontinuities together with the corresponding y values that would remove the discontinuity there.