How RSA Works (generalized form)

The RSA system works with numbers that were originally strings of letters turned via ASCII into these numbers. The numbers are encoded by application of a mathematical function f, and then decoded using the function’s inverse f^{-1}. The last step is to turn the numbers back into strings of letters.

RSA Procedure:

1. Pick two primes p, q
2. Set $n = pq$ and calculate $\phi(n) = (p-1)(q-1)$
3. Pick an odd number a such that $1 < a < \phi(n)$ and gcd $(\phi(n), a) = 1$
4. Compute b, the multiplicative inverse of a mod $\phi(n)$ [i.e., such that ab is congruent to 1 (mod $\phi(n)$)].
5. Publish (a, n) as the public key. Retain b as the private key.

Encoding Message M: send $C = M^a \pmod{n}$ [i.e., $f(M)$]
Decoding Message C: compute $M = C^b \pmod{n}$ [i.e. $f^{-1}(C)$]

Note: In step 4, we use the power of Maple (via the function "inverse of a mod m", not the fraction $1/a$) to calculate b directly with the line:

```
b:= 1/a mod \phi(n);
``` 
This gives b immediately.

Note: The RSA encryption works because:
\[C^b \text{ (mod } n) = (M^a \text{ (mod } n))^b \text{ (mod } n) \quad [\text{apply Law of Mod Mult}] \]
\[= (M^a)^b \text{ (mod } n) = (M^{ab}) \text{ (mod } n) \]
\[= (M^{1+q(p-1)(q-1)}) \text{ (mod } n) \quad [\text{for some } t] \]
\[= (M)(M^{t(p-1)(q-1)}) \text{ (mod } n) \quad [\text{apply Euler; } n = pq] \]
\[= M \text{ (mod } n) = M \quad [\text{because } M < n] \]