Borsuk-Ulam Theorem via the Liftasaurus

Theorem 1 No continuous map

\[f : S^2 \to S^1 \]

satisfies that \(f(-x) = -f(x) \) for every \(x \in S^2 \).

Proof: We will prove this by contradiction. To do so, let us suppose we have a continuous map

\[f : S^2 \to S^1, \]

that preserves anti-podal points, or, in other words, satisfies that \(f(-x) = -f(x) \) for every \(x \in S^2 \). Recall that if we identify anti-podal points, then we form nice covers (the general case is exercise 1 from the exam). Let

\[p : S^2 \to C^2 \]

be the covering map from \(S^2 \) to the cross surface \(C^2 \) that identifies anti-podal points; and let

\[q : S^1 \to S^1 \]

be covering map from the circle to itself that identifies anti-podal points (given by the \(z^2 \) map from exercise 6 section 54 of Munkres). We have the following commutative diagram.

Sub-lemma 1 Assuming there exist an \(f \) such that \(f(-x) = -f(x) \) for every \(x \in S^2 \), there exist a continuous map \(\tilde{f} \) such that the following diagram commutes:

\[
\begin{array}{ccc}
S^2 & \xrightarrow{f} & S^1 \\
\downarrow{p} & & \downarrow{q} \\
C^2 & \xrightarrow{\tilde{f}} & S^1
\end{array}
\]

In other words, \(\tilde{f}p = qf \).

Proof: (Lemma [1]) We will be using lemma 22.2 of Munkres. Perhaps it is best to simply state who will play the role of all the object in Munkres’ lemma. The \(X \) from Munkres’ lemma will be our \(S^2 \). Munkres’ \(p \) is (fortunately) our quotient
map p, Munkres’ Y is our C^2, Munkres’ g is our continuous qf, and Munkres’ Z is our S^1 in the lower right hand corner. Notice that
\[g(x) = qf(x) = q(-f(x)) = qf(-x) = g(-x), \]
hence g is constant on $p^{-1}(x) = \{x, -x\}$ as needed to utilize lemma 22.2 and assert that Munkres’ f, hence our needed \tilde{f}, exist, is continuous and satisfies our sought after $\tilde{f}p = g = qf$ condition.

\textbf{q.e.d}

Since S^2 is path connected, we may choose a path λ that connects a pair of anti-podal points, $\{x, -x\} \subset S^2$. Following λ’s journey through the diagram in lemma[1] we have the following immediate consequence of our sublemma.

\textbf{Lemma 1}

\[[\tilde{f}(p(\lambda))] = [q(f(\lambda))] \]

We will finish our proof off by contradicting this equality. Our contradiction will be that, as elements of $\pi_1(S^1, q(f(x)))$, that $[q(f(\lambda))]$ and $[\tilde{f}(p(\lambda))]$ are distinct. This will be an immediate consequence of the following pair of lemmas.

\textbf{Lemma 2}

\[[\tilde{f}(p(\lambda))] = 0 \]

\textbf{Proof:} Notice $\lambda(0) = -\lambda(1)$, hence $p(\lambda)$ is loop at $p(x)$ in C^2. Recall that $\pi_1(C^2) = \mathbb{Z}/2\mathbb{Z}$ and $\pi_1(S^1) = \mathbb{Z}$. Furthermore, notice that every homomorphism of $\mathbb{Z}/2\mathbb{Z}$ into the integers is the zero, since the nontrivial element of $\mathbb{Z}/2\mathbb{Z}$ must go to an element $m \in \mathbb{Z}$ with the property that $2m = 0$, hence $m = 0$. Now \tilde{f}_* is such an homomorphism hence $\tilde{f}_* = 0$. In particular,
\[0 = \tilde{f}_*[p(\lambda)] = [\tilde{f}(p(\lambda))], \]
as needed. \textbf{q.e.d}

\textbf{Lemma 3}

\[[q(f(\lambda))] \neq 0 \]

\textbf{Proof:} Notice, from the path lifting lemma that $f(\lambda)$ is the unique lift of $q(f(\lambda))$ starting at $f(x)$. Furthermore, notice since $f(\lambda)$ preserves anti-podal pairs that $f(\lambda)$ has distinct end points, namely
\[f(\lambda)(0) = f(x) \neq -f(x) = f(\lambda)(1). \]
If \([q(f(\lambda))]\) were indeed equal to 0 in \(\pi_1(S^1, q(f(x)))\), then there would be a homotopy rel \(\{0, 1\}\) between \(q(f(\lambda))\) constant path \(q(f(x))\). By the homotopy lifting lemma, this homotopy would lift to a homotopy rel \(\{0, 1\}\) between \(f(\lambda)\) and the constant path \(f(x)\). Such a homotopy immediately contradicts the fact that \(f(\lambda)\) has distinct end points.

q.e.d

This same argument tells us some information about maps from \(S^1\) to itself. View the circle as \(R/\mathbb{Z}\) via the usual action of the integers, \(\phi(m)(x) = m + x\). Furthermore, from our key theorem this action gives us a canonical isomorphism between \(\pi_1(S^1, x)\) and \(\mathbb{Z}\). In particular, any continuous map

\[f : S^1 \rightarrow S^1 \]

induces a mapping

\[f_* : \pi_1(S^1, x) \rightarrow \pi_1(S^1, f(x)) \]

and hence a homomorphism

\[f_* : \mathbb{Z} \rightarrow \mathbb{Z}. \]

Any homomorphism \(\psi\) from \(\mathbb{Z}\) to itself is given by \(\psi(m) = \text{deg}(f)m\) for some integer \(\text{deg}(f)\). Our next result is about this integer. Namely in the second problem of the final you will be asked to prove the following theorem.

Theorem 2 If

\[f : S^1 \rightarrow S^1 \]

satisfies that \(f(-x) = -f(x)\) for every \(x \in S^1\), then \(\text{deg}(f)\) is odd.