Algebra Homework 1
Due Monday, January 14

1 Let D be a domain.

 a) Show that every (nonzero) subring of D contains 1, the unity element of D.

 Solution

 Let $R \subseteq D$ be a (nonzero) subring with multiplicative identity u (which is necessarily nonzero). Then $uu = u1 = u$. Hence $u(u - 1) = 0$, and since $u \neq 0$, we see that $u - 1 = 0$, i.e., $u = 1$.

 b) If D is finite, show that D is actually a field.

 Solution

 Let $d \in D$; we need to show that $d^{-1} \in D$. Define $f : D \rightarrow D$ by $f(x) = dx$. Then f is an F-linear transformation. Since D is a domain, f is injective. Since $|D| < \infty$, f is also surjective. Thus, there is $x \in D$ such that $f(x) = 1$. In other words, there is $x \in D$ such that $dx = 1$. Thus, $x = d^{-1} \in D$.

 c) If F is a field with $F \subseteq D$ and $|D : F| < \infty$, show that D is a field.

 Solution

 Nearly the same! Let $d \in D$; we need to show that $d^{-1} \in D$. Define $f : D \rightarrow D$ by $f(x) = dx$. Then f is an F-linear transformation. Since D is a domain, f is injective. Since $|D : F| < \infty$, f is also surjective. Thus, there is $x \in D$ such that $f(x) = 1$. In other words, there is $x \in D$ such that $dx = 1$. Thus, $x = d^{-1} \in D$.

2 Let D be a domain. Show that all the nonzero elements of D have equal additive orders, and that this common order is either ∞ or a prime number. This common order is called the characteristic of the domain D.

Solution
Let \(n \) be the additive order of 1. We will show that \(n \) is also the additive order of every nonzero element \(x \) of \(D \). First notice that \(nx = (n1)x = 0 \), so the order of \(x \) is at most \(n \). On the other hand, if \(mx = 0 \) then \((m1)x = 0\), and since \(x \neq 0 \) and \(D \) is a domain, it must be that \(m1 = 0 \), i.e., the order of 1 is at most the order of \(x \). This proves that the additive order of \(x \) is \(n \).

Now we have to show that \(n \) is either prime or infinite. If \(n \) is infinite, then we are done, so assume that \(n < \infty \). If \(n = pq \) with neither \(p \) nor \(q \) equal to 1 then \(p \) and \(q \) must be strictly less than \(n \). Now \(n1 = (p1)(q1) \) and so either \(p1 = 0 \) or \(q1 = 0 \). This means that either \(p \) or \(q \) is at least \(n \), which is a contradiction.

3 A field of prime characteristic \(p \) is perfect if the map \(F \rightarrow F \) given by \(\alpha \mapsto \alpha^p \) is surjective.

a Show every finite field is perfect.

Solution

Recall that \((\alpha + \beta)^p = \alpha^p + \beta^p\) in a field of characteristic \(p \), so the map \(\phi(x) = x^p \) is a group homomorphism. Since \(F \) is a field, \(\phi(x) = 0 \) if and only if \(x = 0 \); in other words \(\phi \) is injective. Since a map of finite sets is injective if and only if it is surjective, this means that \(F \) is perfect.

b Let \(F \) be an arbitrary field of finite characteristic \(p \neq 0 \). Show that the field of rational functions \(F(X) \) is not perfect.

Solution

It is enough to find one element of \(F(X) \) which is not a \(p^{th} \) power.

Claim \(X \) is not a \(p^{th} \) power.

Proof Say \(X = (a(X)/b(X))^p \). Then \(X \cdot b(X)^p = a(X)^p \). Since \(F \) is a field, the degree of the left hand side is \(p \cdot \deg(b) + 1 \) and the degree of the right side is \(p \cdot \deg(a) \). Since one side is divisible by \(p \) and the other isn’t, they can’t be equal.