Use the chain rule to find $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$.

$z = e^{xy} \tan y$, $x = s + 2t$, $y = \frac{s}{t}$

Finding our tree diagram:

So the chain rule for $\frac{\partial z}{\partial s}$ gives

$$\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s}$$

$$\frac{\partial z}{\partial x} = ye^{xy} \tan y, \quad \frac{\partial z}{\partial y} = xe^{xy} \tan y + e^{xy} \sec^2 y$$

$$\frac{\partial x}{\partial s} = 1, \quad \frac{\partial y}{\partial s} = \frac{1}{t}$$

Thus:

$$\frac{\partial z}{\partial s} = ye^{xy} \tan y \left(\frac{\partial x}{\partial s} \right) + xe^{xy} \tan y + e^{xy} \sec^2 y \frac{\partial y}{\partial s}$$

$$= \frac{3}{t} e^{\frac{s}{t} + 1} \tan \left(\frac{s}{t} \right) + \frac{1}{t} e^{\frac{s}{t} + 1} \left(\frac{s}{t} \tan \left(\frac{s}{t} \right) + \sec^2 \left(\frac{s}{t} \right) \right)$$

$$\frac{\partial z}{\partial t} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial t}$$

$$\frac{\partial x}{\partial t} = 2, \quad \frac{\partial y}{\partial t} = \frac{3}{t} \frac{s}{t} = -st^{-2} = -\frac{s}{t^2}$$

Hence:

$$\frac{\partial z}{\partial t} = \left(ye^{xy} \tan y \right) \left(\frac{3}{t} \right) + \left(xe^{xy} \tan y + e^{xy} \sec^2 y \right) \left(-\frac{s}{t^2} \right)$$

$$= \frac{5}{t} e^{\frac{s}{t} + 1} \left(2 \tan \left(\frac{s}{t} \right) - \frac{s}{t} \tan \left(\frac{s}{t} \right) - \frac{1}{t} \right) \sec^2 \left(\frac{s}{t} \right)$$
If \(z = f(x, y) \), where \(f \) is differentiable, \(x = g(t) \), \(y = h(t) \),
\(g(3) = 2, \ g'(3) = 5, \ h(3) = 7, \ h'(3) = -4 \), \(f_x(2, 7) = 6 \) and
\(f_y(2, 7) = -8 \). Find \(\frac{dz}{dt} \) when \(t = 3 \).

The chain rule gives:
\[
\frac{dz}{dt} = \frac{dz}{dx} \frac{dx}{dt} + \frac{dz}{dy} \frac{dy}{dt}
\]

Now
\[
\begin{align*}
\frac{dz}{dx} &= \frac{df}{dx} = f_x(x, y) \\
\frac{dx}{dt} &= \frac{dg}{dt} = g'(t) \\
\frac{dz}{dy} &= \frac{df}{dy} = f_y(x, y) \\
\frac{dy}{dt} &= \frac{dh}{dt} = h'(t)
\end{align*}
\]

so
\[
\frac{dz}{dt} = f_x(x, y)g'(t) + f_y(x, y)h'(t)
\]

from the statement of the problem at \(t = 3 \)
\(g(3) = 2, \ h(3) = 7 \) and \(g'(3) = 5, \ h'(3) = -4 \)

which implies
\[
\frac{dz}{dt} = f_x(2, 7) \cdot 5 + f_y(2, 7) \cdot (-4)
\]

also from the statement of the problem
\[f_x(2, 7) = 6, \ f_y(2, 7) = -8 \]

thus
\[
\frac{dz}{dt} = 6 \cdot 5 + (-4)(-8) = 30 + 32 = 62
\]
Let \(W(s, t) = F(u(s, t), v(s, t)) \), where \(F, u, v \) are differentiable, \(u(1, 0) = 2, u_s(1, 0) = -2, u_t(1, 0) = 6, v(1, 0) = 3, v_s(1, 0) = 5, v_t(1, 0) = 4, F_u(2, 3) = -1 \), and \(F_v(2, 3) = 10 \).

Find \(u_s(1, 0) \) and \(v_t(1, 0) \).

\[
\begin{align*}
\frac{\partial W}{\partial t} &= \frac{\partial F}{\partial u} \cdot \frac{\partial u}{\partial t} + \frac{\partial F}{\partial v} \cdot \frac{\partial v}{\partial t} \\
\frac{\partial W}{\partial s} &= \frac{\partial F}{\partial u} \cdot \frac{\partial u}{\partial s} + \frac{\partial F}{\partial v} \cdot \frac{\partial v}{\partial s} \\
\end{align*}
\]

At \((1, 0) \),
\[
\begin{align*}
u(1, 0) &= 2, & u_s(1, 0) &= -2 \\
v(1, 0) &= 3, & v_s(1, 0) &= 5 \\
F_u(u(1, 0), v(1, 0)) &= F_u(2, 3) = -1 \\
F_v(u(1, 0), v(1, 0)) &= F_v(2, 3) = 10 \\
\end{align*}
\]

So \(\frac{\partial W}{\partial t} |_{(1, 0)} = F_u(2, 3) u_s(1, 0) + F_v(2, 3) v_s(1, 0) \)
\[
= (-1)(6) + (10)(4) = -6 + 40 = 34
\]

and \(\frac{\partial W}{\partial s} |_{(1, 0)} = F_u(2, 3) u_t(1, 0) + F_v(2, 3) v_t(1, 0) \)
\[
= (-1)(-2) + (10)(5) = 2 + 50 = 52
\]
Use a tree diagram to write out the chain rule for the given case. Assume all functions are differentiable.

\[v = f(p, q, r) \quad p = \phi(x, y, z) \quad q = \psi(x, y, z) \quad r = \rho(x, y, z) \]

\[
\frac{\partial v}{\partial x} = \frac{\partial v}{\partial p} \cdot \frac{\partial p}{\partial x} + \frac{\partial v}{\partial q} \cdot \frac{\partial q}{\partial x} + \frac{\partial v}{\partial r} \cdot \frac{\partial r}{\partial x} \\
\frac{\partial v}{\partial y} = \frac{\partial v}{\partial p} \cdot \frac{\partial p}{\partial y} + \frac{\partial v}{\partial q} \cdot \frac{\partial q}{\partial y} + \frac{\partial v}{\partial r} \cdot \frac{\partial r}{\partial y} \\
\frac{\partial v}{\partial z} = \frac{\partial v}{\partial p} \cdot \frac{\partial p}{\partial z} + \frac{\partial v}{\partial q} \cdot \frac{\partial q}{\partial z} + \frac{\partial v}{\partial r} \cdot \frac{\partial r}{\partial z}
\]
Use the chain rule to find the indicated partial derivatives.

\[
u = \sqrt{r^2 + s^2} = (r^2 + s^2)^{1/2} \quad r = y + x \cos t \quad s = x + y \sin t
\]

\[
\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial u}{\partial t} \quad \text{when} \quad x=1, y=2, t=0
\]

Things we will need:

\[
\frac{\partial r}{\partial s} = \frac{1}{2} (r^2 + s^2)^{-1/2} (2r) = r (r^2 + s^2)^{-1/2}
\]

\[
\frac{\partial u}{\partial s} = \frac{1}{2} (r^2 + s^2)^{-1/2} (2s) = s (r^2 + s^2)^{-1/2}
\]

\[
\frac{\partial r}{\partial x} = \cos t, \quad \frac{\partial r}{\partial y} = 1, \quad \frac{\partial r}{\partial t} = -x \sin t
\]

\[
\frac{\partial s}{\partial x} = 1, \quad \frac{\partial s}{\partial y} = x \sin t, \quad \frac{\partial s}{\partial t} = y \cos t
\]

Now

\[
\frac{\partial u}{\partial x} = \frac{\partial u}{\partial r} \cdot \frac{\partial r}{\partial x} + \frac{\partial u}{\partial s} \cdot \frac{\partial s}{\partial x} = r (r^2 + s^2)^{-1/2} \cos t + s (r^2 + s^2)^{-1/2} (1)
\]

\[
= \frac{(y + x \cos t)(\cos t) + (x + y \sin t)}{(\sqrt{(y + x \cos t)^2 + (x + y \sin t)^2})^{1/2}}
\]

So

\[
\frac{\partial u}{\partial x} \bigg|_{(1,2,0)} = \frac{(2 + 1)(1) + (1 + 2)(0)}{(\sqrt{(2 + 1)^2 + (1 + 2)^2})^{1/2}} = \frac{4}{\sqrt{10}} = \frac{4}{\sqrt{10}} = \frac{2\sqrt{10}}{5}
\]

\[
\frac{\partial u}{\partial y} = \frac{\partial u}{\partial r} \cdot \frac{\partial r}{\partial y} + \frac{\partial u}{\partial s} \cdot \frac{\partial s}{\partial y} = \frac{\partial r}{\partial x} (1) + \frac{\partial s}{\partial x} (x \sin t)
\]

\[
= \frac{(y + x \cos t) + (x + y \cos t) \sin t}{(\sqrt{(y + x \cos t)^2 + (x + y \sin t)^2})^{1/2}}
\]

So

\[
\frac{\partial u}{\partial y} \bigg|_{(1,2,0)} = \frac{(2 + 1) + (1 + 2)(0)}{(\sqrt{(2 + 1)^2 + (1 + 2)^2})^{1/2}} = \frac{3}{\sqrt{10}} = \frac{3\sqrt{10}}{10}
\]
\[\frac{du}{dt} = \frac{\partial u}{\partial r} \cdot \frac{dr}{dt} + \frac{\partial u}{\partial s} \cdot \frac{ds}{dt} \]

\[= \frac{(y + x \cos \theta) (-x \sin \theta) + (x+y \sin \theta) (y \cos \theta)}{(y + x \cos \theta)^2 + (x+y \sin \theta)^2} \frac{1}{\sqrt{e}} \]

so \[\frac{du}{dt} \bigg|_{(1,7,0)} = \frac{(2+1)(-1)(0) + (1+2)(1)(2)(1)}{(2+1)^2 + (1+2)^2} \frac{1}{\sqrt{e}} = \frac{3}{\sqrt{10}} = \frac{\sqrt{10}}{5} \]
6) Use the chain rule to find the indicated partial derivatives.

\[Y = \omega \tan^{-1}(uv), \quad u = r + s, \quad v = s + t, \quad \omega = t + r \]

\[\frac{\partial Y}{\partial r}, \quad \frac{\partial Y}{\partial s}, \quad \frac{\partial Y}{\partial t} \quad \text{when} \quad r = 1, \quad s = 0, \quad t = 1 \]

Some things we will need.

\[Y_u = \tan^{-1}(uv), \quad Y_v = \frac{1}{1 + u^2} \quad Y_\omega = \frac{1}{1 + v^2} \]

\[\frac{\partial Y}{\partial r} = 1, \quad \frac{\partial Y}{\partial s} = 1, \quad \frac{\partial Y}{\partial t} = 0 \]

\[\frac{\partial Y}{\partial r} = 0, \quad \frac{\partial Y}{\partial s} = 1, \quad \frac{\partial Y}{\partial t} = 1 \]

\[\frac{\partial \omega}{\partial r} = 1, \quad \frac{\partial \omega}{\partial s} = 0, \quad \frac{\partial \omega}{\partial t} = 1 \]

\[u(1, 0, 1) = 1, \quad v(1, 0, 1) = 1, \quad \omega(1, 0, 1) = 1 + 1 = 2 \]

\[Y_u(1, 1, 2) = \frac{\pi}{4}, \quad Y_v(1, 1, 2) = \frac{\pi + 1}{4}, \quad Y_\omega(1, 1, 2) = 1 \]

So \[\frac{\partial Y}{\partial r} = \frac{\partial Y}{\partial \omega} \cdot \frac{\partial \omega}{\partial r} + \frac{\partial Y}{\partial u} \cdot \frac{\partial u}{\partial r} + \frac{\partial Y}{\partial v} \cdot \frac{\partial v}{\partial r} \]

Thus \[\frac{\partial Y}{\partial r}(1, 0, 1) = \frac{\pi}{4} (1 + (1)(0) + (1)(0)) = \frac{\pi}{4} + 1 = \frac{\pi + 4}{4} \]

\[\frac{\partial Y}{\partial s} = \frac{\partial Y}{\partial \omega} \cdot \frac{\partial \omega}{\partial s} + \frac{\partial Y}{\partial u} \cdot \frac{\partial u}{\partial s} + \frac{\partial Y}{\partial v} \cdot \frac{\partial v}{\partial s} \]

\[= \frac{\pi}{4} (0) + (1)(1) + (1)(1) = 2 \]

\[\frac{\partial Y}{\partial t} = \frac{\partial Y}{\partial \omega} \cdot \frac{\partial \omega}{\partial t} + \frac{\partial Y}{\partial u} \cdot \frac{\partial u}{\partial t} + \frac{\partial Y}{\partial v} \cdot \frac{\partial v}{\partial t} \]

\[= \frac{\pi}{4} (1) + (1)(0) + (1)(1) = \frac{\pi}{4} + 1 = \frac{\pi + 4}{4} \]
7) If \(z = f(x-y) \) show \(\frac{\partial^2 z}{\partial x} + \frac{\partial^2 z}{\partial y} = 0 \)

Let \(u = x-y \) the \(z = f(u) \)

hence \(\frac{\partial z}{\partial x} = f_u(x-y). \frac{\partial u}{\partial x} = -f_u(x-y) \)

\(\frac{\partial z}{\partial y} = f_u(x-y). \frac{\partial u}{\partial y} = f_u(x-y)(-1) = -f_u(x-y) \)

thus \(\frac{\partial^2 z}{\partial x} + \frac{\partial^2 z}{\partial y} = f_u(x-y) - f_u(x-y) = 0 \)
8) Show that any function of the form
\[z = f(x + at) + g(x - at) \]
is a solution to the wave equation
\[\frac{\partial^2 z}{\partial t^2} = c^2 \frac{\partial^2 z}{\partial x^2} \]

Proof: Let \(u = x + at \) and \(v = x - at \)

then \(z = f(u) + g(v) \)

and \(\frac{\partial z}{\partial t} = \frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial t} + \frac{\partial g}{\partial v} \cdot \frac{\partial v}{\partial t} \)

Now \(\frac{\partial z}{\partial u} = f'(u) \) since \(g(v) \) does not depend on \(u \).

Similarly, \(\frac{\partial z}{\partial v} = g'(v) \)

Thus \(\frac{\partial z}{\partial t} = f'(u)(a) + g'(v)(-a) \)

Let \(h(u, v) = \frac{\partial z}{\partial t} \)

then \(\frac{\partial^2 z}{\partial t^2} = \frac{\partial h}{\partial t} = \frac{\partial h}{\partial u} \cdot \frac{\partial u}{\partial t} + \frac{\partial h}{\partial v} \cdot \frac{\partial v}{\partial t} \)

as above \(\frac{\partial h}{\partial u} = af''(u) \) since \(-a \frac{\partial g}{\partial v} = ag''(v) \)

Thus \(\frac{\partial^2 z}{\partial t^2} = af''(u)(a) - a \cdot ag''(v)(-a) = a^2 f''(u) + a^2 g''(v) = a^2 (f''(u) + g''(v)) \)

Similarly to the above,

\[\frac{\partial^2 z}{\partial x} = \frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial g}{\partial v} \cdot \frac{\partial v}{\partial x} \]

this time \(\frac{\partial u}{\partial x} = 1 = \frac{\partial v}{\partial x} \)

hence \(\frac{\partial^2 z}{\partial x} = f'(u) + g'(v) \)

Similarly, let \(\ell(u, v) = \frac{\partial z}{\partial x} \)

then \(\frac{\partial^2 z}{\partial x^2} = \frac{\partial \ell}{\partial x} = \frac{\partial \ell}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial \ell}{\partial v} \cdot \frac{\partial v}{\partial x} \)

\(\frac{\partial \ell}{\partial u} = f''(u), \quad \frac{\partial \ell}{\partial v} = g''(v) \)

hence \(\frac{\partial^2 z}{\partial x^2} = f''(u) + g''(v) \)

Thus \(\frac{a^2}{\partial^2 z/\partial x^2} = \frac{\partial^2 z/\partial t^2}{\partial x^2} \)
9) Find the directional derivative of f at the given point in the direction given by the angle θ

$$f(x, y) = \sqrt{5x - 4y} = (5x - 4y)^{1/2}, \quad (4, 1), \quad \theta = -\pi/6$$

A unit vector in the direction given by the angle θ is just $\langle \cos \theta, \sin \theta \rangle$.

$\theta = -\pi/6$, hence our vector is just

$$\langle \cos \frac{-\pi}{6}, \sin \frac{-\pi}{6} \rangle = \langle \frac{\sqrt{3}}{2}, -\frac{1}{2} \rangle$$

Now from Theorem 3 in this section,

$$D_{\langle \frac{\sqrt{3}}{2}, -\frac{1}{2} \rangle} f(x, y) = f_x(x, y) \left(\frac{\sqrt{3}}{2}\right) + f_y(x, y) \left(-\frac{1}{2}\right)$$

$$f_x(x, y) = \frac{1}{2} (5x - 4y)^{-1/2} \cdot 5$$

$$f_y(x, y) = \frac{1}{2} (5x - 4y)^{-1/2} \cdot (-4)$$

Hence

$$D_{\langle \frac{\sqrt{3}}{2}, -\frac{1}{2} \rangle} f(4, 1) = \left(\frac{1}{2} \cdot \frac{1}{4} \cdot 5\right) \left(\frac{\sqrt{3}}{2}\right) + \left(\frac{1}{2}\right) \left(\frac{1}{4}\right)(-4)(-\frac{1}{2})$$

$$= \frac{5\sqrt{3}}{16} + \frac{1}{16}$$
10) Find the directional derivative of f at the given point in the direction indicated by the angle Θ.

\[f(x,y) = x \sin(xy) \quad (2,0) \quad \Theta = \pi/3 \]

A unit vector in the direction of $\frac{\pi}{3}$ is $\langle \cos \frac{\pi}{3}, \sin \frac{\pi}{3} \rangle = \langle \frac{1}{2}, \frac{\sqrt{3}}{2} \rangle$

By theorem 3,

\[D_{\langle \frac{1}{2}, \frac{\sqrt{3}}{2} \rangle} f(2,0) = f_x(2,0) \cdot \frac{1}{2} + f_y(2,0) \cdot \frac{\sqrt{3}}{2} \]

\[
\begin{align*}
 f_x(x,y) &= \sin(xy) + xy \cos(xy) \\
 f_y(x,y) &= x^2 \cos(xy) \\
 f_x(2,0) &= \sin(0) + 2(0) \cos(0) = 0 \\
 f_y(2,0) &= 4 \cos(0) = 4
\end{align*}
\]

Thus,

\[D_{\langle \frac{1}{2}, \frac{\sqrt{3}}{2} \rangle} f(2,0) = 0 \cdot \frac{1}{2} + 4 \cdot \frac{\sqrt{3}}{2} = 2\sqrt{3} \]
11. \(f(x,y) = y \ln x \quad P(1, -3) \quad \mathbf{u} = \left\langle -\frac{4}{5}, \frac{3}{5} \right\rangle \)

(a) Find the gradient of \(f \).
(b) Evaluate the gradient at the point \(P \).
(c) Find the rate of change of \(f \) at \(P \) in the direction of the vector \(\mathbf{u} \).

(a) The gradient of \(f = \langle f_x(x, y), f_y(x, y) \rangle \)

\[f_x(x, y) = \frac{y}{x} \quad \text{and} \quad f_y(x, y) = \ln x \]

so the gradient of \(f \) is \(\left\langle \frac{y}{x}, \ln x \right\rangle \).

(b) \(\left\langle \frac{y}{x}, \ln x \right\rangle \mid (1, -3) = \left\langle -\frac{3}{1}, \ln (1) \right\rangle = \left\langle -3, 0 \right\rangle \)

(c) We must first find a unit vector in the direction of \(\mathbf{u} \).

To do this, we take \(\mathbf{u} \)

Now, \(||\mathbf{u}|| = \sqrt{\left(-\frac{4}{5} \right)^2 + \left(\frac{3}{5} \right)^2} = \sqrt{\frac{16}{25} + \frac{9}{25}} = \sqrt{\frac{25}{25}} = 1 \)

Thus, \(\mathbf{u} \) is a unit vector.

And to find the rate of change, we take

\[\nabla f(1, -3) \cdot \mathbf{u} = \left\langle -3, 0 \right\rangle \cdot \left\langle -\frac{4}{5}, \frac{3}{5} \right\rangle = \frac{12}{5} \]
(a) Find the gradient of \(f \)

(b) Evaluate the gradient at the point \(P \)

(c) Find the rate of change of \(f \) at \(P \) in the direction of the vector \(u \)

\[
\nabla f(x, y, z) = \left< \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right>
\]

\[
f_x = \frac{1}{2} (x+y+z)^{-1/2} (1)
\]

\[
f_y = \frac{1}{2} (x+y+z)^{-1/2} (2)
\]

\[
f_z = \frac{1}{2} (x+y+z)^{-1/2} (3)
\]

So \(\nabla f = \left< \frac{1}{2(x+y+z)} \right>, \left< \frac{2}{2(x+y+z)} \right>, \frac{y}{2(x+y+z)} \right> \)

\[
\nabla f(1, 3, 1) = \left< \frac{1}{2\sqrt{1+3+1}}, \frac{1}{2\sqrt{1}}, \frac{3}{4} \right> = \left< \frac{1}{4}, \frac{1}{4}, \frac{3}{4} \right>
\]

\[
|u| = \sqrt{\frac{4}{9} + \frac{9}{49} + \frac{36}{99}} = \sqrt{\frac{4\times 9\times 99}{99}} = 1
\]

Hence \(u \) is a unit vector and the rate of change is given by

\[
\nabla f(1, 3, 1) \cdot u = \left< \frac{1}{4}, \frac{1}{4}, \frac{3}{4} \right> \cdot \left< \frac{1}{4}, \frac{1}{4}, \frac{3}{4} \right> = \frac{2}{28} + \frac{3}{28} + \frac{18}{28} = \frac{23}{28}
\]
Find the directional derivative of the function at the given point in the direction \(v \).

\[g(s,t) = s^2 e^t \quad (2,0) \quad v = i + j \]

\(v \) is not a unit vector so we first have to find a unit vector in the direction of \(v \). This is just given by \(\frac{v}{|v|} \).

\[|v| = \sqrt{1+1} = \sqrt{2} \quad \text{thus} \quad \langle \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \rangle \text{ is such a vector} \]

\[
D_{\left< \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right>} g(2,0) = g_s(2,0) \frac{1}{\sqrt{2}} + g_t(2,0) \frac{1}{\sqrt{2}}
\]

By theorem 3,

\[g_s(2,0) = 2se^t \Rightarrow g_s(2,0) = 4 \]

\[g_t(2,0) = s^2 e^t \Rightarrow g_t(2,0) = 4 \]

hence

\[
D_{\left< \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right>} g(2,0) = \frac{4}{\sqrt{2}} + \frac{4}{\sqrt{2}} = \frac{8}{\sqrt{2}} = 4\sqrt{2}
\]
Find the directional derivative of the function at the given point in the direction of \(\mathbf{v} \).

\[f(x, y, z) = \sqrt{x^2 + y^2 + z^2} = (x^2 + y^2 + z^2)^{1/2}, \quad (1, 2, -2), \quad \mathbf{v} = \frac{1}{3}(-6, 6, 3) \]

First, we will find the unit vector in the direction of \(\mathbf{v} \):

\[\|\mathbf{v}\| = \sqrt{36 + 36 + 9} = \sqrt{81} = 9 \]

Hence, \(\frac{\mathbf{v}}{\|\mathbf{v}\|} \) is a unit vector in the direction of \(\mathbf{v} \) and \(\frac{\mathbf{v}}{\|\mathbf{v}\|} = \frac{1}{3}(-6, 6, 3) \)

We know from \([4]\) that \(D_{\mathbf{u}} f(x, y, z) = \nabla f(x, y, z) \cdot \mathbf{u} \)

where \(\mathbf{u} \) is a unit vector.

\[\nabla f(x, y, z) = \left< f_x, f_y, f_z \right> \]

\[f_x = \frac{x}{\sqrt{x^2 + y^2 + z^2}}, \quad f_y = \frac{y}{\sqrt{x^2 + y^2 + z^2}}, \quad f_z = \frac{z}{\sqrt{x^2 + y^2 + z^2}} \]

So, \(\nabla f(1, 2, -2) = \left< \frac{1}{3}, \frac{2}{3}, -\frac{2}{3} \right> \)

Hence, \(D_{\frac{\mathbf{v}}{\|\mathbf{v}\|}} f(1, 2, -2) = \left< \frac{1}{3}, \frac{2}{3}, -\frac{2}{3} \right> \cdot \frac{1}{3}(-6, 6, 3) \]

\[= \frac{1}{9}(-2 + 4 + 2) = \frac{4}{9} \]