#1 Find the points on the ellipsoid $x^2 + 2y^2 + 3z^2 = 1$ where the tangent plane is parallel to the plane $3x - y + 3z = 1$.

$\nabla f(x_0, y_0, z_0) = \langle 2x_0, 4y_0, 6z_0 \rangle$ and $\langle 3, -1, 3 \rangle$ are both normal to the ellipsoid at (x_0, y_0, z_0) where (x_0, y_0, z_0) is a point where the tangent plane is parallel to $3x - y + 3z = 1$.

So we need $\langle 2x_0, 4y_0, 6z_0 \rangle = c \langle 3, -1, 3 \rangle$.

$\iff \langle x_0, 2y_0, 3z_0 \rangle = k \langle 3, -1, 3 \rangle$

So $x_0 = 3k$

$y_0 = \frac{1}{2}k$

$z_0 = k$

$\Rightarrow (3k)^2 + 2(\frac{1}{2}k)^2 + 3(k)^2 = k^2(9 + \frac{1}{2} + 3) = 1$

$\Rightarrow k = \pm \frac{1}{5}\sqrt{2}$

$\Rightarrow (x_0, y_0, z_0) = (\pm \frac{3\sqrt{2}}{5}, \mp \frac{1}{5}\sqrt{2}, \pm \frac{\sqrt{2}}{5})$

#2 Suppose $(1, 1)$ is a critical point of a function f with continuous second derivatives. In each case, what can you say about f?

@ $f_{xx}(1, 1) = 4$, $f_{xy}(1, 1) = 1$, $f_{yy}(1, 1) = 2$

$D(1, 1) = f_{xx}(1, 1)f_{yy}(1, 1) - [f_{xy}(1, 1)]^2 = 4 \cdot 2 - 1^2 = 7 > 0$

\Rightarrow $f_{xx}(1, 1) > 0$ so by the 2nd derivatives test f has a local minimum at $(1, 1)$

B $f_{xx}(1, 1) = 4$, $f_{xy}(1, 1) = 3$, $f_{yy}(1, 1) = 2$

$D(1, 1) = f_{xx}(1, 1)f_{yy}(1, 1) - [f_{xy}(1, 1)]^2 = 4 \cdot 2 - 3^2 = -1 < 0$

$\Rightarrow f$ has a saddle point at $(1, 1)$ by the 2nd derivatives test.
Use the level curves in the figure to predict the location of the critical points of \(f \) and whether \(f \) has a saddle point or a local extrema at each of those points. Explain & check \(y \) 2nd derivatives test.

As we move away from \((-1,1) \& (-1,-1)\) in any direction, the values of \(f \) are increasing, so we expect local minima.

As we move away from \((1,0)\) in any direction, the values of \(f \) are decreasing, so we expect a local maximum. These are hyperbola-shaped level curves near \((-1,0), (1,1) \& (1,-1)\) and the values of \(f \) are decreasing as we move away in some directions and increasing in others, so we expect saddle points.

\[
f(x,y) = 3x^2 - x^3 - 2y^2 + y^4 \Rightarrow f_x(x,y) = 6x - 3x^2 \quad f_y = -4y + 4y^3\]

\[3 - 3x^2 < 0 \Rightarrow x = \pm 1 \quad -4y + 4y^3 = 0 \Rightarrow y(y^2 - 1) = 0 \Rightarrow y = 0 \text{ or } y = \pm 1\]

So the critical points are \((\pm 1, 0) \& (\pm 1, \pm 1)\).

\[
f_{xx} = -6x \quad f_{xy} = 0 \quad f_{yy} = 12y^2 - 4
\]

\[
D(x,y) = f_{xx}(x,y)f_{yy}(x,y) - [f_{xy}(x,y)]^2 = (-6x)(12y^2 - 4) - 0^2 = -72x y^2 + 24x
\]

<table>
<thead>
<tr>
<th>Point</th>
<th>(D)</th>
<th>(f_{xx})</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>((1,0))</td>
<td>(24>0)</td>
<td>(-6<0)</td>
<td>local max @ ((1,0))</td>
</tr>
<tr>
<td>((-1,0))</td>
<td>(-24<0)</td>
<td></td>
<td>saddle point @ ((-1,0))</td>
</tr>
<tr>
<td>((1,1))</td>
<td>(-48<0)</td>
<td></td>
<td>saddle point @ ((1,1))</td>
</tr>
<tr>
<td>((1,-1))</td>
<td>(-48<0)</td>
<td></td>
<td>saddle point @ ((1,-1))</td>
</tr>
<tr>
<td>((-1,1))</td>
<td>(48>0)</td>
<td>(6>0)</td>
<td>local min @ ((-1,1))</td>
</tr>
<tr>
<td>((-1,-1))</td>
<td>(48>0)</td>
<td>(6>0)</td>
<td>local min @ ((-1,-1))</td>
</tr>
</tbody>
</table>
#4

Find the local max & min values & saddle points of the function.

\[f(x,y) = x^4 + y^4 - 4xy + 2 \]

\[f_x = 4x^3 - 4y \quad f_y = 4y^3 - 4x \]

\[f_{xx} = 12x^2 \quad f_{xy} = -4 \quad f_{yy} = 12y^2 \]

\[f_x = 0 \Rightarrow y = x^3 \quad \Rightarrow f_y = 4x^9 - 4x \]

\[f_y = 0 \Rightarrow x(x^6 - 1) = 0 \Rightarrow x = 0 \text{ or } x = \pm 1 \quad \text{so critical points are } (0,0), (1,1), (-1,1) \]

\[D(0,0) = 0 \cdot 0 - (-4)^2 = -16 < 0 \quad \Rightarrow (0,0) \text{ is a saddle point} \]

\[D(1,1) = 12 \cdot 12 - (-4)^2 = 144 - 16 > 0 \quad f_{xx}(1,1) = 12 > 0 \]

\[\Rightarrow (1,1) \text{ is a local min} \]

\[D(-1,-1) = 12 \cdot 12 - (-4)^2 = 144 - 16 > 0 \quad f_{xx}(-1,-1) = 12 > 0 \]

\[\Rightarrow (-1,-1) \text{ is a local min} \]

#5

\[f(x,y) = xy(1-x-y) = xy - x^2y - xy^2 \]

\[f_x = y - 2xy - y^2 \quad f_y = x - x^2 - 2xy \]

\[f_{xx} = -2y \quad f_{xy} = 1 - 2x - 2y \quad f_{yy} = -2x \]

\[f_x = 0 \Rightarrow y = 0 \text{ or } y = 1 - 2x \quad \Rightarrow f_y = x - x^2 \text{ or } 3y^2 - x = f_y \]

\[f_y = 0 \Rightarrow x - x^2 = 0 \Rightarrow x = 0 \text{ or } x = 1 \]

\[3y^2 - x = 0 \Rightarrow x = 0 \text{ or } x = \frac{3}{2} \quad \text{so critical points are } (0,0), (1,0), (0,1), \left(0, \frac{1}{2}\right) \]

\[D(0,0) = D(1,0) = D(0,1) = -1 < 0 \]

\[\Rightarrow (0,0), (1,0), (0,1) \text{ are saddle points} \]

\[D\left(\frac{3}{3}, \frac{1}{3}\right) = \frac{1}{3} \quad f_{xx}\left(\frac{3}{3}, \frac{1}{3}\right) = -\frac{2}{3} < 0 \]

\[\Rightarrow f\left(\frac{3}{3}, \frac{1}{3}\right) = \frac{1}{2} \text{ is a local maximum} \]
#6 \[f(x,y) = x^2 ye^{-x^2-y^2} \]

\[f_x = \frac{x^2 y e^{-x^2-y^2} (-2x) + 2xy e^{-x^2-y^2}}{x^2 ye^{-x^2-y^2}} = 2xy \left(1 - x^2 \right) e^{-x^2-y^2} \]

\[f_y = \frac{x^2 ye^{-x^2-y^2} (-2y) + x^2 e^{-x^2-y^2}}{x^2 ye^{-x^2-y^2}} = x^2 \left(1 - 2y^2 \right) e^{-x^2-y^2} \]

\[f_{xx} = 2y \left(2x^2 - 5x^2 + 1 \right) e^{-x^2-y^2} \]

\[f_{xy} = 2x \left(1 - x^2 \right) \left(1 - 2y^2 \right) e^{-x^2-y^2} \]

\[f_{yy} = 2x^2 ye^{-x^2-y^2} \]

\[f_x = 0 \Rightarrow x = 0, y = 0 \text{ or } x = \pm 1 \]

\[x = 0 \Rightarrow f_y = 0 \forall y \text{ so all } (0,y) \text{ are critical points.} \]

\[y < 0 \Rightarrow f_y = 0 \Rightarrow x^2 e^{-x^2} = 0 \Rightarrow x = 0 \text{ so } (0,0) \text{ is a critical point.} \]

\[x = \pm 1 \Rightarrow f_y = 0 \Rightarrow \left(1 - 2y^2 \right) e^{-y^2} = 0 \Rightarrow y = \pm \frac{1}{\sqrt{2}} \]

So \((1, \pm \frac{1}{\sqrt{2}}) \) and \((-1, \pm \frac{1}{\sqrt{2}}) \) are critical points.

\[D(0,y) = 0 \text{ so the second derivatives test tells us nothing, but when } y > 0, x^2 ye^{-x^2-y^2} > 0 \text{ and } = 0 \text{ only when } x = 0 \text{ so } f(0,y) = 0 \]

is a local min when \(y > 0 \) (Since everything around \(f(0,y) = 0 \) is \(> 0 \)).

\[y < 0, x^2 ye^{-x^2-y^2} < 0 \text{ and } = 0 \text{ only when } x = 0 \text{ so } f(0,y) = 0 \text{ is a local max when } y < 0 \text{ (Since everything around } f(0,y) = 0 \text{ is } < 0) \]

And \((0,0)\) is a saddle point.

\[D(\pm 1, \frac{1}{\sqrt{2}}) = 8e^{-3} > 0 \]

\[f_{xx}(\pm 1, \frac{1}{\sqrt{2}}) = -2\sqrt{2} e^{-3/2} < 0 \]

So \(f(\pm 1, \frac{1}{\sqrt{2}}) = -\frac{1}{2} e^{-3/2} \) are local maxima.

\[D(\pm 1, -\frac{1}{\sqrt{2}}) = 8e^{-3} > 0 \]

\[f_{xx}(\pm 1, -\frac{1}{\sqrt{2}}) = 2\sqrt{2} e^{-3/2} > 0 \]

So \(f(\pm 1, -\frac{1}{\sqrt{2}}) = \frac{1}{2} e^{-3/2} \) are local minima.
#7
Find the absolute maximum & minimum values of \(f \) on the set \(D \).
\[f(x, y) = 1 + 4x - 5y \quad D \text{ is the closed triangular region with vertices } (0, 0), (2, 0), \text{ and } (0, 3) \]

\(f \) is a polynomial so it is continuous on \(D \) and \(\text{max and min exist. } f_x = 4 \quad \text{ and } f_y = -5 \quad \text{ So there are no critical points inside } D \) \text{ and the absolute extremum must live on the boundary.}

\(L_1 = (0, 0) \rightarrow (0, 3) \quad L_2 = (0, 0) \rightarrow (2, 0) \quad L_3 = (2, 0) \rightarrow (0, 3) \)

On \(L_1, \ x = 0 \Rightarrow f(0, y) = 1 - 5y \quad (0 \leq y \leq 3) \) which is a decreasing function so the maximum is \(f(0, 0) = 1 \) \text{ and the minimum is } \(f(0, 3) = -14 \)

On \(L_2, \ y = 0 \Rightarrow f(x, 0) = 1 + 4x \quad (0 \leq x \leq 2) \) which is an increasing function so the maximum is \(f(2, 0) = 9 \) and the minimum is \(f(0, 0) = 1 \)

On \(L_3, \ y = -\frac{3}{2}x + 3 \Rightarrow f(x, -\frac{3}{2}x + 3) = \frac{23}{2}x - 14 \quad (0 \leq x \leq 2) \)
which is an increasing function so the maximum is \(f(2, 0) = 9 \) and the minimum is \(f(0, 3) = -14 \)

So the absolute maximum is \(f(2, 0) = 9 \) and the absolute minimum is \(f(0, 3) = -14 \).

#8
Find three positive numbers whose sum is 100 & whose product is a maximum.
\[x + y + z = 100 \quad \text{So we want to maximize } f(x, y, z) = xyz(100 - x - y) = 100xy - x^2y - xy^2 \]

\[f_x = 100y - 2xy - y^2 \quad f_y = 100x - x^2 - 2xy \]

\[f_{xx} = 2y \quad f_{xy} = 100 - 2x - 2y \quad f_{yy} = -2x \]

\(f_x = 0 \Rightarrow y = 0 \quad \text{ and } f_y = 0 \Rightarrow x = 0 \) or \(x = 100 \)

\(f_{xy} = 0 \Rightarrow 3x^2 - 100x = 0 \Rightarrow x = 0 \) or \(x = \frac{100}{3} \)

So the critical points are \((0, 0), (100, 0), (10, 100), \) \& \(\left(\frac{100}{3}, \frac{100}{3} \right) \)
\[D(0,0) = D(100,0) = D(0,100) = -10,000 < 0 \] so
\[(0,0), (100,0) \text{ and } (0,100) \text{ are saddle points} \]
\[D\left(\frac{100}{3}, \frac{100}{3} \right) = -\frac{2000}{3} < 0 \]
So \(\left(\frac{100}{3}, \frac{100}{3} \right) \) is a local maximum. So \[x = y = z = \frac{100}{3} \]

9. Find the dimensions of the rectangular box with largest volume if the total surface area is given as 64 cm\(^2\).

Surface area \(= 2(xy + yz + xz) = 64 \) cm\(^2\) so \(xy + yz + xz = 32 \)

\[\Rightarrow z = \frac{32 - xy}{x + y} \]
So we want to maximize \(f(x,y) = \frac{32 - xy}{x + y} xy \)

\[f_x = \frac{32y - 2xy^2 - x^2y}{(x + y)^2} - y^2 \left(\frac{32 - 2xy - x^2}{(x + y)^2} \right) \]

\[f_y = y^2 \left(\frac{32 - 2xy - x^2}{(x + y)^2} \right) \]

\[f_x = 0 \Rightarrow y = \frac{32 - x^2}{2x} \] (since \(y \) cannot = 0)

\[\text{and} \quad f_y = 0 \Rightarrow 32(4y^2) - (32 - x^2)(4x^2) - (32 - x^2)^2 = 0 \]

\[\Rightarrow 3x^4 + 64x^2 - (32)^2 = 0 \]
\[\Rightarrow x^2 = \frac{64}{6} \Rightarrow x = \frac{8}{\sqrt{6}} \Rightarrow y = \frac{64/3}{x} = \frac{8}{\sqrt{6}} \]

\[z = \frac{32}{x} \]
Thus the box is the cube with edge length \(\frac{8}{\sqrt{6}} \) cm.
A cardboard box without a lid is to have a volume of 32,000 cm3.
Find the dimensions that minimize the amount of cardboard used.
The surface area of the box is $xy + 2(xz + yz)$ if $xyz = 32,000$.

$z = \frac{32,000}{xy}$
So we wish to minimize

$$f(x, y) = xy + \frac{64,000(xy)}{xy} = xy + 64,000 \left(\frac{1}{x} + \frac{1}{y}\right)$$

$$f_x = y - 64,000x^2$$
$$f_y = x - 64,000y^2$$

$f_x = 0 \Rightarrow y = 64,000x^2$
Sub into $f_y = 0 \Rightarrow x^3 = 64,000 \Rightarrow x = 40 \Rightarrow y = 40$

$$D(x, y) = [(2)(64,000)]^2 x^3 y^{-3} - 1 > 0 @ (40, 40)$$

$f_x(40, 40) > 0$ so $f(40, 40)$ is a minimum and the box dimensions are $x = y = 40$ cm, $z = 20$ cm.