LECTURE OUTLINE
Sequences and Limits

Professor Leibon
Math 8
Oct. 1, 2004
Goals

Improper Integrals
The Integral Comparison Test
Sequences
Improper Integral

If \(\int_a^t f(x) \, dx \) exists for every number \(t \geq a \), then

\[
\int_a^\infty f(x) \, dx = \lim_{t \to \infty} \int_a^t f(x) \, dx
\]

provided this limit exists (as a finite number). We say the integral is *convergent* if the limit exist and *divergent* otherwise.

Practice Example: \(\int_1^\infty \frac{1}{x^2} \, dx = \lim_{t \to \infty} (1 - \frac{1}{t}) = 1.\)
The Integral Comparison Test

Comparison Theorem: Suppose \(f(x) \) and \(g(x) \) are continuous functions with \(f(x) \geq g(x) \geq 0 \) for all \(x > a \).

(a) If \(\int_a^\infty f(x) \, dx \) is convergent, then \(\int_a^\infty g(x) \, dx \) is convergent.

(b) If \(\int_a^\infty g(x) \, dx \) is divergent, then \(\int_a^\infty f(x) \, dx \) is divergent.

Example: Decide whether \(\int_1^\infty \frac{(\cos(x))^2}{x^2} \, dx \) and \(\int_1^\infty \frac{3+e^{-2x}}{x} \, dx \) are divergent or convergent.
Improper Integral

If \(f(x) \) is continuous on \([a, b)\) and is discontinuous at \(b \), then

\[
\int_a^b f(x) \, dx = \lim_{t \to b^-} \int_a^t f(x) \, dx
\]

provided this limit exists (as a finite number), and we call the integral convergent.

Example: Decide whether \(\int_0^1 \frac{1}{\sqrt{1-x}} \, dx \) is divergent or convergent, and find its value if it is convergent.
A Sequence

A sequence is a list of numbers $a_1, a_2, a_3 \ldots, a_n \ldots$, often denoted as $\{a_1, a_2, a_3 \ldots\}$, $\{a_n\}_{n=1}^{\infty}$ or simply $\{a_n\}$.
A sequence \(\{a_n\} \) has limit \(L \) provided for every \(\varepsilon > 0 \) there exist an integer \(N \) such that for every \(n > N \)

\[|a_n - L| < \varepsilon. \]
A Convergent Sequence

If \(\{a_n\} \) has a limit \(L \), we say \(\{a_n\} \) is *convergent* and we denote this as \(a_n \rightarrow L \) as \(n \rightarrow \infty \) or

\[
\lim_{n \to \infty} a_n = L.
\]

When \(\{a_n\} \) has no limit we call \(\{a_n\} \) *divergent*.

Example: Decide whether \(\{(−1)^n\} \) is convergent or divergent.
Sequences Given by a Formula

If \(\lim_{x \to \infty} f(x) = L \) and \(a_n = f(n) \), then

\[
\lim_{x \to \infty} a_n = L.
\]

Example: Find the limit of \(\left\{ \frac{n}{(n+1)^2} \right\} \).
Squeeze Theorem

The Squeeze Theorem: If $a_n \leq b_n \leq c_n$ for $n > N$ and $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L$, then $\lim_{n \to \infty} a_n = L$.

Corollary: If $\lim_{n \to \infty} |a_n| = 0$, then $\lim_{n \to \infty} a_n = 0$.

Example: Find the limit of $\{\frac{n!}{n^n}\}$ and $\{\frac{(-1)^n}{n}\}$.