LECTURE OUTLINE

Dot product and cross product

Professor Leibon

Math 8

Oct. 27, 2004
Dot Product

Rounding Review
The dot product
Scalar and Vector projection
Rounding 101

We will interpret "approximate the following NUMBER to N digits" to mean that we are we know the NUMBER rounded to N places. (This means we replace the NUMBER with the a number in the form $\frac{M}{10^N}$ such that $|\text{NUMBER} - \frac{M}{10^N}| \leq \frac{5}{10^{N+1}}$. Notice this leaves two possibilities when our number is in the form $\frac{K}{10^N} + \frac{5}{10^{N+1}}$. What do you usually do and why?).

Yesterday we found $\int_0^1 \sqrt{1 + x^4} dx = 1.090918803 \pm 0.002297794121$, or rather that $\int_0^1 \sqrt{1 + x^4} dx$ was somewhere in the interval $[1.08862101, 1.09321660]$ (by using the first 4 terms of the series and the remainder estimate for alternating series). Have we approximated $\int_0^1 \sqrt{1 + x^4} dx$ to 2 digits? How about to 3 digits?

Our first approximation (using 3 terms) was the observation that $\int_0^1 \sqrt{1 + x^4} dx$ was somewhere in the interval $[1.081303419, 1.090918803]$. Had we already approximated $\int_0^1 \sqrt{1 + x^4} dx$ to 2 digits?
Dot Product

Given two vectors $\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$ and $\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$, then

$$\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_3 + a_3 b_3$$

Ex.: Let $\vec{a} = < -1, 2, 5 >$ and $\vec{b} = < 2, 2, 7 >$, and find $\vec{a} \cdot \vec{b}$.
basic properties

\[\vec{a} \cdot \vec{a} = |a|^2 \]

\[\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a} \]

\[\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c} \]

\[(c\vec{a}) \cdot \vec{b} = c(\vec{a} \cdot \vec{b}) = \vec{a} \cdot (c\vec{b}) \]

Ex.: Let \(\vec{a} = \langle -1, 2, 5 \rangle \) and \(\vec{b} = \langle 2, 2, 7 \rangle \), and find \((\vec{a} + 3\vec{b}) \cdot (2\vec{a} + \vec{b}) \).
The Big Fact

Letting θ be the angle between \vec{a} and \vec{b}, we have

$$\cos(\theta) = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$$

Ex.: Let $\vec{a} = <-1, 2, 5>$ and $\vec{b} = <2, 2, 7>$, and find the angle between \vec{a} and \vec{b}.
Two non-zero vectors \vec{a} and \vec{b} are orthogonal if $\vec{a} \cdot \vec{b} = 0$.

Ex.: Let $\vec{a} = \langle -1, 2, 5 \rangle$ and $\vec{b} = \langle 2, 2, 7 \rangle$, and find a non zero vector orthogonal to \vec{b}. Should you be able to find a vector orthogonal to both \vec{a} and \vec{b}?
Projection

The projection of \vec{b} onto \vec{a} is

$$\text{proj}_{\vec{a}} \vec{b} = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^2} \vec{a}.$$

The component of \vec{b} in the \vec{a} direction is

$$\text{comp}_{\vec{a}} \vec{b} = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}|}.$$

Ex.: Let $\vec{a} = \ll -1, 2, 5 \gg$ and $\vec{b} = \ll 2, 2, 7 \gg$, and find the component of \vec{b} in the \vec{a} direction and the projection of \vec{b} onto \vec{a}.

LECTURE OUTLINE Dot product and cross product – p.8/1
Examples

Let \(\vec{a} = \langle -1, 2, 5 \rangle \) and \(\vec{b} = \langle 2, 2, 7 \rangle \). Find a length 3 vector such that its component in the \(\vec{b} \) is 2. What is your vectors component in the \(\vec{a} \) direction? Is it possible to find a length 3 vector such that its component in the \(\vec{b} \) is 2 which is perpendicular to \(\vec{a} \)?
Cross Product

Given vectors \vec{a} and \vec{b} we define $\vec{a} \times \vec{b}$ to be the unique vector satisfying

1. $\vec{a} \times \vec{b}$ is orthogonal to \vec{a} and to \vec{b} (or zero).
2. It has length equal to the area of the parallelogram determined by \vec{a} and \vec{b}.
3. $\vec{a} \times \vec{b}$ is in the direction determined by the right hand rule going from \vec{a} to \vec{b}.

Main Theorem

Let \(\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k} \) and \(\mathbf{b} = b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k} \), then \(\mathbf{a} \times \mathbf{b} \) equals

\[
(a_2 b_3 - a_3 b_2) \mathbf{i} - (a_1 b_3 - a_3 b_1) \mathbf{j} + (a_1 b_2 - a_2 b_1) \mathbf{k}.
\]

Example: Let \(\mathbf{a} = \langle -1, 2, 5 \rangle \) and \(\mathbf{b} = \langle 2, 2, 7 \rangle \) and find \(\mathbf{a} \times \mathbf{b} \). Find a length 3 vector such that its component in the \(\mathbf{b} \) is 2 which is perpendicular to \(\mathbf{a} \).