Instructions:

- Answer ALL questions from Section A
- You may use a handwritten sheet of notes. Calculators are NOT permitted.
- Read all questions carefully
- Unless explicitly told otherwise, you should explain all your answers fully.
- Do NOT separate the pages of your exam.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>A4</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>A5</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>A6</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>A7</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Score: 1
Section A: Answer ALL questions.

Problem A1: [15 pts]

(a) Find an equation for the plane that passes through the points \(A(1, 0, 1), B(2, -1, 0)\) and \(C(1, 3, 2)\).

(b) Does the line \(\vec{r}(t) = (1, 2, 1) + t(1, -1, -1)\) intersect the plane \(x + 2y - z = -2\)? (Justify your answer.)

(c) What is the distance from the point \(P(1, 2, 1)\) to the plane \(x - y + 3z = -2\)?
Problem A2: [16 pts]

(a) Find \(\int \frac{1}{x} \sqrt{1 + 4x^2} \, dx \).

(b) Evaluate the arc-length of the curve \(\vec{r}(t) = (t, 2e^t) \) between the points \((0, 2)\) and \((1, 2e)\).
Problem A3: [16 pts] Consider the function \(f(x, y) = ye^{\sin x} \).

(a) Find the gradient \(\nabla f \).

(b) Find the tangent plane to the surface \(z = f(x, y) \) at the point \((0, 1, 1) \).

(c) Use the function \(f(x, y) \) to approximate \((0.9)e^{\sin 0.2} \) as a fraction.

(d) Find a tangent vector (at \((\pi/2, 2) \)) to the contour (level set) of \(f(x, y) \) that passes through the point \((\pi/2, 2) \).
Problem A4: [16 pts] Consider the function \(f(x, y) = (x - 1)(x^2 + y^2) - 8x \).

(a) Find and classify all the critical points of \(f \).

(b) Find the absolute max and min of \(f(x, y) \) on the region \(x^2 + y^2 \leq 9 \).
Problem A5: [15 pts]

(a) What is the radius of convergence of the power series
\[\sum_{n=2}^{\infty} (-1)^n \frac{4^n}{n+1} (x - 2)^{2n}. \]

(b) Expand \(\frac{1}{(3 + x)^2} \) as a power series. What is its radius of convergence?
Problem A6: [10 pts] Does the improper integral

\[\int_{0}^{1} \frac{\ln x}{\sqrt{x}} \, dx \]

converge or diverge? If it converges, what does it converge to?
Problem A7: [12 pts] The probability of the bird seeing a worm depends upon its position in space according to the formula

\[P(x, y, z) = \frac{\cos^2(x + y)}{1 + z^2}. \]

(a) A bird’s flight path is given by the curve

\[\mathbf{r}(t) = (t, t^2 \cos t, e^{-t}). \]

At time \(t = 0 \), is the bird’s chance of spotting a worm increasing or decreasing?

(b) If the bird starts at its location at \(t = 0 \), in which direction should it fly to make its chances of finding lunch increase most rapidly? (Your answer should be a unit vector.)