Application of Statistical Methods to Wind Forecasting for Wind Power Generation

September 2001

Alex Barnett

Lyman Laboratory of Physics, Harvard University

Collaboration with:

- Michael Brower (TrueWind, Andover, MA)
- John Zack (MESO, Albany, NY)
- Radford Neal (U. of Toronto CS/Statistics)

Funding: TrueWind Solutions LLC

Computing resources: Heller Group at Harvard Physics, MESO
Outline of today’s talk

- Motivation
- Existing forecasting methods
- Data, variables & timescales
- Bayesian neural networks
- Wind velocity results
- Wind-to-power relation
- Power results
- Future directions & conclusions
Motivation: why forecast for wind power?

Electricity from wind...

- now most cost-effective renewable, safe
- worldwide installed capacity doubling every \(\sim 2 \) years
- wind fraction of total capacity: \(e.g. \) Denmark 30\%, US \(\sim 1\% \)

Intermittent resource: increased wind fraction \(\rightarrow \) problems

- Utilities keep reserve non-renewable capacity running (waste)
- *Trading* on electricity markets 1 day ahead
- Increased fluctuations in load (grid balancing problems)

Value of accurate daily forecasts, 0–2 days ahead:

\(e.g. \) \(\sim $20m \) per year to a larger US utility

Future penetration of wind power: improved forecasts of

- wind speed and direction
- power output of turbine or cluster of turbines
Existing forecasting methods

Two approaches:

1. **Extrapolation** of wind speed time series measured at site
 - no physical modelling
 - few seconds–1 hour ahead only
 - linear (*e.g.* Kalman filters) and nonlinear (neural net)
 → *small* improvement over persistence

2. **Hydrodynamic weather model simulation**
 - initialized daily from observations (*weather services*)
 - useful up to ~ 4 days ahead (*good models*)
 - computer-intensive → ~ 4 km min spatial resolution
 - are *systematic errors*:
 - model variables *transfer function* observed at site
 - TrueWind (USA), Risø (Denmark): linear error correction

Why systematic errors?
- local topography (< 4 km)
- turbines at windy spots!

Correcting errors
≡ learning *transfer function*
≡ *‘Downscaling’* from grid
to local site

This talk: BETTER DOWNSCALING FOR WIND POWER
Complex flows, thresholding effects ⇒ nonlinear methods
Model variables

Many, often highly correlated. At each grid point have...

1 C 850 mb Temperature (1)
1 kg/kg 850 mb H2O Vapor Mixing Ratio (2)
1 m/s 860 mb U Wind Component (3)
1 m/s 850 mb V Wind Component (4)
1 m 850 mb Geopotential Height (5)
1 m/sec 850 mb Absolute vorticity (6)
1 C 500 mb Temperature (7)
1 kg/kg 500 mb H2O Vapor Mixing Ratio (8)
1 m/s 500 mb U Wind Component (9)
1 m/s 500 mb V Wind Component (10)
1 m 500 mb Geopotential Height (11)
1 m/sec 500 mb Absolute vorticity (12)
1 F Surface Air Temperature (13)
1 F 2 m Dew Point Temperature (14)
1 m/s 10 m Wind Speed (15)
1 F Surface Dew Point Temperature (16)
1 m/s Surface U Wind Component (17)
1 m/s Surface V Wind Component (18)
1 m/s 10 m U Wind Component (19)
1 m/s 10 m V Wind Component (20)
1 m/s 25 m U Wind Component (21)
1 m/s 25 m V Wind Component (22)
1 m/s 40 m U Wind Component (23)
1 m/s 40 m V Wind Component (24)
1 m/s 50 m U Wind Component (25)
1 m/s 50 m V Wind Component (26)
1 m/s 70 m U Wind Component (27)
1 m/s 70 m V Wind Component (28)
1 m/s 70 m TKE (29)
1 mb Surface Altimeter Setting (30)
1 F Surface Skin Temperature (31)
1 W/m2 Surface Sensible Heat Flux (32)
1 W/m2 Surface Latent Heat Flux (33)
1 F 2 m Temperature (34)
1 frac INTG Cloud Cover (35)
1 frac 900 Low Clouds (36)
1 frac 625 Mid Clouds (37)
1 frac 275 High Clouds (38)
1 kg/m2 INTG Liquid Water Path (39)
1 W/m2 Model Top Outgoing Infrared Radiation (40)
1 K 500 mb Lifted Index (41)
1 % Sfc-500mb Mean RH (42)
1 in 1000-500mbThickness (43)
1 mm Surface Total Precipitation (44)
1 in Surface Convective Precipitation (45)
1 kg/kg 850 mb Cloudwater Mixing Ratio (46)
1 kg/kg 500 mb Cloudwater Mixing Ratio (47)
1 kg/kg 300 mb Cloudwater Mixing Ratio (48)
1 kg/m**2 SFC-VILFW (49)
1 kg/m**2 SFC-Total Cloudwater (50)
1 kg/m**2 SFC-Total Cloud Ice (51)
1 kg/m**2 SFC-Total Rain water (52)
1 kg/m**2 SFC-Total snow water (53)
1 in Surface Snow on Ground (54)
1 in Surface New Snow (55)
1 mm Surface Rain (56)
1 in Surface Snow (57)
1 mm Surface Freezing Rain (58)
1 mm/hr Surface Rainfall rate (59)
1 in Surface Snowfall rate (60)
1 vol frac Surface Shal Soil Moist (61)

Which variables are significant in downscaling to observed wind?
A look at some data

Wind speed at site in California (Nov 2000 — Feb 2001):

- flips between ‘calm’ and ‘windy’ (rarer events) states.
- no clear daily seasonality.

Scatter of wind velocity vector:

OBSERVED \((u, v)\) at site

MODEL \((u_0, v_0)\) zero altitude

Noisy, linear correlations small:

Mountain pass!
Timescales & historical data

Wind fluctuations (in ~ 1 km boundary layer) 2 timescales...

- care only about "steady wind"
- observed \((u, v)\), generated power: 1-hour averages
- model variables \((u_0, v_0)\), etc: hourly samples

Autocorrelation dies \(~ 1\) day:
(random walk at high frequencies)

Learning transfer function from history:

I will limit to model runs of only 24 hrs

1 m/s = 1 hr to cross grid cell \(\Rightarrow\) suspect system has short 'memory'

\(\Rightarrow\) Start with memory-less transfer function
Bayesian Neural Networks

MacKay used BNNs:
- forecast building's energy use given 4 other variables
- won prediction competition (1993)

Architectures: compared...
- no hidden layers (≡ linear regression)
- 1 hidden layer of 8 units with ARD (Neal & Mackay) **nonlinear**

Noise model: found t-distribution (long tails) beats gaussian.

Bayes:
\[
\{ \text{Regularization (weight decay)} \rightarrow \text{prior on weights} \\
\text{Training} \rightarrow \text{finding posterior given training data} \]

Sampling the posterior with MCMC (Neal’s fbm software).

Measuring success:
- compare MAE (**mean absolute error**) — for NN predictions
- Assessments:
 a) split time series *randomly* into training & test sets
 b) simulated forecasting using only data from *past*
a) Learning wind velocity. Results I

Random split assessment (no regard to time order)

- ~ 2000 cases: 1/4 training, 3/4 test
- try different split choices—judge performance fluctuations (*not* quantifiable statistical significance)
- medium dataset size dominated by rare events → cannot discern small changes in performance.

Not enough computer time to use ~ 100 variables as inputs...

Increasing # inputs: (4 sites E,D,P,M).

- site variation (E-D close, P-M close, < 1 grid cell)
- **M problem**: nonlinear advantage lost as input # ↑

1-layer ARD → **linear**

- **E**
 - 3 choices: C
- **D**
- **P**
- **M**
a) Learning wind velocity. Results II

Expanding input space: \((u_o, v_o)\) from 4 grid points...

\[
\begin{array}{c|c}
16 (ig) & \{ \text{E} \} \\
8 (g) & \{ \text{D} \} \\
10 (i) & \\
2 () & \\
\end{array}
\]

\begin{itemize}
 \item i → ig: no significant improvement
\end{itemize}

- i = include 8 extra inputs
- g = use \(u_o, v_o\) at 4 grid points:

ARD—little consistency in which inputs relevant:

(Weights often continue to grow during MCMC.)
b) Forecasting wind velocity results

Test 9 consecutive weeks, each using only past cases to train.

How far back in time for training?
- long enough for many cases, capture rare events.
- short enough to react to seasonal changes.
- performance decreased below 30 days (≈ used for weather).

Results for 10 inputs:

Examine speed prediction errors for site D:

Power prediction would differ due to non-linear relation...
The wind-to-power relation: ‘power curve’

Scatter due to

- hourly averaging of turbulence via nonlinear relation
- variable turbine performance (+ rapid direction changes)
- \((u, v)\) often not measured exactly at turbine

Nonlinear shape affects predictive importance:

- ‘under 4 m/s’ and ‘over 15 m/s’ are binary categories
- speed accuracy important only in intermediate region

\[\text{power} \sim \text{speed}^3 \]

.... this type of curve used on last slide
Learning power output directly—problems

PDF of output power is what utilities care about
⇒ predict power directly from model variables?

Patchy coverage of input space.

Reparam. model winds

\[(u, v) \rightarrow (\text{speed,cos}(\theta),\sin(\theta))\]

- Reflects radial-symm 'bowl'
- gave large improvement

Results: 1-layer net has signatures of overfitting

- Increasing # inputs → worse performance
- TrueWind’s hand-tuned 9 inputs: gives worse than linear fitting
- Later MCMC samples generalize worse

Noise varies drastically as function of wind speed.

- bad noise model can cause overfitting
- remove small-noise region → but still overfits
 \[(\text{speed < 4 m/s})\]

cf near-optimal performance on dummy data (ideal, uncorrelated, constant noise).
Future directions

- Try more available inputs.
 - Time-filtered versions of (some) inputs: learning transfer function with memory (*e.g.* MacKay 1993)
 - An optimal method would use both model variables and *recently observed* windspeed as inputs:

```
0 1 2 3
time ahead / days
```

- Automated search (feature selection) from $> 10^2$ inputs.
- Better use of historical training data (including climateology) to focus on learning rare events (high speeds).
- Other training methods (GDES), architectures.
- Dominant noise is on *inputs* \rightarrow better noise model?
- Tests with large machine-generated time series, add real-world features:
 - Independent training sets \rightarrow rigorous measures of statistical significance.
 - uncover causes of MCMC overfitting.
 - ways to handle non-constant noise.
Conclusions

1. Neural nets for wind velocity forecasting:

 - good random-split results did not carry over to forecasting.
 - small improvement ($\sim 5\%$) over linear fitting same inputs.
 - depends heavily on site \rightarrow not reliable.
 - now testing by TrueWind (not yet used).
 - maybe there is little nonlinear correlation?

2. Direct neural net learning of turbine output power:

 - no better than hand-tweaked linear methods.
 - plagued by overfitting \leftarrow non-constant noise?

3. Need:

 - lots of time + data to discern relative performance.
 - automated ways to search/reduce large input space.

4. ‘Virgin territory’: very little statistics/AI expereetees in wind power... many directions yet to be tried!