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How many shuffles to randomize a deck of cards?

Lloyd N. Trefethen* and Lloyd M. Trefethen

A celebrated theorem of Aldous, Bayer, and Diaconis asserts that it takes � 3
2
log2 n riffle

shuffles to randomize a deck ofn cards, asymptotically for largen, and that the randomization

occurs abruptly according to a “cutoff phenomenon.” These results depend upon measuring

randomness by a quantity known as the total variation distance. If randomness is measured

by uncertainty or entropy in the sense of information theory, there is no cutoff. It takes

only � log2 n shuffles to reduce the information to a proportion arbitrarily close to 0, and

�
3
2
log2 n to reduce it to an arbitrarily small level in an absolute sense. At 3

2
log2 n shuffles,

about 0:0601 bits remain, independently of n.
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Wide publicity has been attracted in recent years to the question, how many

ri�e shu�es does it take to randomize a deck of cards? A beautiful mathematical

paper by Bayer and Diaconis in 1992, building upon earlier work by Aldous and by

Diaconis, proved that in a certain precise sense the answer is � 3
2
log2 n for a deck of

n cards in the limit n!1 (1,2,3,4). Moreover, the randomization arrives abruptly:

after 1:4 log2 n shu�es, for large enough n, the deck is nowhere near random. These

conclusions have been discussed on radio talk shows and in newspapers and mag-

azines including The New York Times, The Economist, Newsweek, and Seventeen

(5). They do not stand in isolation but are part of the rapidly developing subject

of the analysis of non-asymptotic convergence of Markov chains, with implications

in condensed matter physics, computer science, and other �elds (6,7).

Throughout our discussion, a ri�e shu�e is de�ned in a mathematically precise

way due to Gilbert and Shannon and independently Reeds (8). The deck is �rst cut

roughly in half according to a binomial distribution: the probability that � cards are

cut is
�
n
�

�
=2n. The two halves are then ri�ed together by dropping cards roughly

alternately from each half onto a pile, with the probability of a card being dropped

from each half proportional to the number of cards in it. There is evidence that

this idealization of a shu�e is a reasonable approximation to the actual behavior of

human shu�ers (9).

Figure 1 illustrates the theorem of Diaconis and his colleagues. The kth dot

indicates the total variation distance to randomness kP k�P1kTV (de�ned below)

after k shu�es. Through step k = 4, virtually no reduction is achieved, and kP k �

P1kTV does not fall below 0:5 until step k = 7. This is the origin of the often-quoted

conclusion that \it takes 7 shu�es to randomize a deck of cards." As n!1, the
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dots straighten up into the sharp curve indicated by the dashed line. Speci�cally,

if k= log2 n! � as n!1 for some constant �, then kP k �P1kTV ! 1 if � < 1:5

and kP k � P1kTV ! 0 if � > 1:5.

Mathematically, the shu�ing problem is a Markov chain de�ned on the state

space consisting of the n! possible orderings of the deck (for n = 52, n! � 8� 1067).

Suppose that at a particular moment, the probability that the deck is in ordering

i is pi, with 0 � pi � 1 and
Pn!

i=1 pi = 1. If p represents the row vector of these

probabilities, of length n!, then one step of the shu�ing process replaces p by the

product pP , where P is an n! � n! matrix with nonnegative entries and row sums

equal to 1. This much is standard material in the �eld of Markov chains (10). The

total variation norm after step k is de�ned by the formula

kP k
� P1kTV = 1

2
max

i

n!X

j=1

j(P k
� P1)ij j ; (1)

where P k is the kth power of P and P1 is the limit of P k as k !1 (11,12). This

norm can be interpreted as follows. Let A be a subset containing jAj elements of

the set of all n! permutations of the deck, and let p(k)(A) be the probability that

the deck lies in one of the con�gurations of A at step k. Then kP k�P1kTV is the

di�erence j p(k)(A)�jAj=n! j, maximized over all subsets A. This number quanti�es

the rate at which an in�nitely competent gambler could expect to make money, on

average, if permitted to place bets with payo� 1 against a fair house to the e�ect

that the deck does or does not lie in arbitrary sets of con�gurations A.

In the �eld of probability theory, there are longstanding arguments for consid-

ering the total variation norm. On the other hand, the shu�ing of a deck of cards,

like the wide range of other Markov chain problems of which this may be viewed as

a prototype, can also be considered from the point of view of information theory.

Let the uncertainty or entropy associated with a probability vector p be de�ned by

the familiar formula associated with Fisher, Shannon, and Wiener (13,14),

U = �
n!X

i=1

pi log2 pi: (2)
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This quantity ranges from 0 if we have complete information about the system

(pi = 1 for a single i) to log2(n!) if we have no information (pi = 1=n! for all i).

Conversely, the information associated with p is de�ned by

I = log2(n!)� U: (3)

According to standard results of information theory, this number quanti�es the

rate at which an in�nitely competent coder could expect to transmit information,

on average in the limit of in�nitely long message lengths, if permitted to encode

signals arbitrarily in shu�ed decks of cards.

Shu�ing a deck of n cards can thus be thought of as a process of destruction of

information, in which the information content of the deck is reduced from log2(n!)

to 0 bits. The question is, how many shu�es does it take to achieve this? We have

computed answers to this question by methods based on explicit manipulation of

n� n matrices adapted from earlier joint work with J�onsson (Table 1) (15,16,17).

Figure 2 shows results for both n = 52 and the limit n ! 1. The �rst

shu�e reduces I by almost exactly n bits (18). Subsequent shu�es also reduce I

by approximately n bits until I reaches a level that is small relative to its initial

value log2(n!). Each further shu�e then reduces I by a factor asymptotically of

1=4. In the measure of information, evidently, the cuto� phenomenon is absent.

Shu�es remove information from the deck in a steady fashion, until asymptotically

as k !1, all the information is gone.

A quantitative analysis of the process just described sheds light on the disparity

between Figs. 1 and 2. Suppose we wish to reduce I from log2(n!) to � log2(n!) for

some � with 0 < �� 1. At n bits per shu�e, since log2(n!) � n log2(n=e) � n log2 n,

this takes � log2 n shu�es. We call this the linear phase of the shu�ing process.

Now suppose we wish to reduce I further to some absolute level � > 0, independent

of n as n ! 1. With a reduction by the factor 1
4
at each shu�e, this takes

log4(� log2(n!)=�) � log4(log2(n!)) � log4(n log2 n) � log4 n = 1
2
log2 n further

shu�es. We call this the exponential phase of the shu�ing process. Figure 3

illustrates these two phases. The shu�ing process is governed by powers of the
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n! � n! matrix P � P1, since (P � P1)k = P k � P1 for k � 1 (11), and the

asymptotic convergence rate 1
4
is equal to the square of the largest eigenvalue of

this matrix, 1
2
(19,20,21,22).

It is not obvious, even to experts, what the full signi�cance is of the distinction

between our two measures of randomization, kP k � P1kTV, which shows a cuto�,

and I, which does not. To shed some light on this matter, here is perhaps the

simplest possible example of a Markov chain with a cuto�. Suppose we start with a

word of n bits and modify it at each step by randomizing the last bit, then shifting

the word circularly to the left. The information remaining after k � n steps is

I = n� k bits: the decay is exactly linear. The total variation norm, on the other

hand, is kP k�P1kTV = 1�2k�n: there is a cuto�, with essentially no decay until

k gets close to n (23). The explanation of the formula 1� 2k�n is that after step

k, n� k bits remain untouched, so a gambler could be guaranteed to win 1 dollar

on a bet for which the house, based on the assumption of randomness, would only

require him or her to put up 2k�n dollars. This example suggests that the di�erence

between I and kP k�P1kTV is analogous to the di�erence in statistics between the

magnitude of a trend and its statistical signi�cance. As a deck of cards is shu�ed,

the magnitude of the non-randomness decreases steadily from the start, but until

k � 3
2
log2 n, there remains a pocket of non-randomness that is signi�cant (24).

The question of which measure of randomization is the more important one for

card players is presumably game-dependent.

How many ri�e shu�es, then, to randomize a deck? The best answer from the

point of view of information theory seems to be � log2 n as n!1, or for n = 52,

5 shu�es.
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Fig. 1. Randomization of a deck of n cards as measured in the total variation norm

kP k � P1kTV of Aldous, Bayer and Diaconis. The dots and the numerical axis labels

correspond to n = 52 and the dashed line to the limit n ! 1. In this limit a “cutoff

phenomenon” occurs, with abrupt randomization at � 3
2
log2 n shuffles. For n = 52,

kP k � P1kTV falls below 0:5 at the seventh shuffle.
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Fig. 2. Randomization as measured by reduction of information from log2(n!) to 0 bits.

Again, the dots and the numerical axis labels correspond to n = 52 and the dashed line

to n ! 1. In this measure there is no cutoff effect, and randomization in the sense of

reduction of the original information to a proportion arbitrarily close to 0 is achieved after

only�log2 n shuffles. For n = 52, 3:52% of the information remains after five shuffles and

0:92% after six shuffles.



Trefethen & Trefethen Science ms., p. 11

Table 1. Information I (bits) remaining in an initially

ordered deck of 52 cards after 0,1,: : : ,10 riffle shuffles.

shuffle no. information

0 225.58

1 173.58

2 121.58

3 69.874

4 27.271

5 7.9452

6 2.0727

7 0.5239

8 0.1313

9 0.0329

10 0.0082
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Fig. 3. A different view of information for decks of sizes n = 13; 26; 52; 104. The vertical

scale is now logarithmic, facilitating consideration of the absolute as well as relative amount

of information at each step, and the horizontal axis is scaled differently for each n so that

3
2
log2 n always falls at the dashed line in the middle. Randomization is achieved in two

phases: linear reduction of I for�log2 n shuffles (unrelated to the eigenvalues of P �P1)

followed by exponential reduction forever (determined by the eigenvalues). At 3
2
log2 n

shuffles, approximately 0:0601 bits remain, independently of n.


