Ergodicity for Non-reversible Chains

Ivan Antoniv

February 28, 2013

Abstract

A Markov chain is ergodic if for some positive integer N, it is possible to get from any state i to any state j in exactly N steps. In this paper we establish an upper bound for the lowest value of such an N by showing that for an ergodic M state Markov chain we may go from any state i to any state j in m steps, where $m \geq (M - 1)^2 + 1$. We then show how to construct a Markov chain of M states such that this bound is met with equality.

1 Preliminaries

In this paper we consider Markov chains with at least two states, and we think of a given Markov chain as an unweighted directed graph. This is because we are only concerned about whether the probability of transition between a state i and a state j is greater than zero. In the undirected graph representation of the Markov chain, then, the nodes are the states of the Markov chain, and there is an edge going from node i to node j if the transition probability of going from state i to state j is non-zero. Note that from this point forward all variables are non-negative integers unless stated otherwise.

It is also important to note that if in a given Markov chain, we can go from any node i to any node j in exactly N steps, then we can do the same in exactly $N + 1$ steps. To see this, take some arbitrary nodes a and b in the Markov chain and assume we can go from any node i to any node j in exactly N steps. There must be some node k in the Markov chain such that b is a neighbour of k, since otherwise we could not get to b from any state other than b, which would contradict our assumption. By our assumption, then, we have a walk w from a to k of length N. We can therefore take a walk of length $N + 1$ from a to b by going from a to k along w and then stepping from k to b. We therefore have the above statement.

\footnote{Paper for ’Math 100: Topics in Probability’, Dartmouth College, Professor: Peter Winkler, Spring 2013}
From the preceding proof we then have that if we can get from a given node \(i \) to any node \(j \) in \(N \) steps, then we can do the same in exactly \(N + 1 \) steps, and it then follows from repeated application of this fact that we can get from \(i \) to \(j \) in exactly \(n \) steps for \(n \geq N \). Moreover, we get from repeated application of the statement from the previous paragraph that if we can go from any node \(i \) to any node \(j \) in exactly \(N' \) steps, then we can do the same in exactly \(n' \) steps for \(n' \geq N \).

2 The Theorem

Theorem 1. For an ergodic Markov chain with \(M \) states we may go from any state \(i \) to any state \(j \) in exactly \(m \) steps, for all \(m \geq (M - 1)^2 \).

Proof. Take some arbitrary ergodic Markov chain with \(M \) states, where \(M \geq 2 \), denoting it as \(G \). We may then choose a positive integer, denoting it \(N_G \), such that it is possible to get from any state \(i \) to any state \(j \) in exactly \(N \) steps in \(G \). We first show:

Lemma 1. Every node in \(G \) is on a cycle. \(G \) contains a cycle with \(\tau < M \) nodes.

Proof. Take some node \(i \in G \). Then we have that there is a walk from \(i \) back to \(i \) of length \(N_G \). Then if the only two places in the walk with the same node are the beginning and the end (since we start and end at \(i \)), we have a cycle. If on the other hand the walk is not a cycle, then there are two places in the walk, at least one of which is not the beginning or end, where we have the same node, call it \(y \). We may then replace these two instances of \(y \) and all nodes between them in the walk with the single node \(y \). Since the walk has finite length, we may repeat this process until we have a cycle. So we get that each \(i \in G \) is on a cycle.

Now suppose for the purpose of contradiction that none of the nodes in \(G \) are on a cycle of length \(\tau < M \). Then they must all be only on a cycle of length \(M \). \(G \), then, is a cycle of length \(M \) since introducing any edge to a cycle of length \(M \) would create a cycle of length less than \(M \). But a cycle of length greater than one is not ergodic. To see that this is true, take some \(i \in G \), and take some walk on the cycle starting at node \(i \). The walk is always at \(i \) after \(0, M, 2M, \ldots \) steps and never at \(i \) at any other time. This is because at each step we only have one choice as to the next node we visit, so our walk is a walk around the cycle. So there cannot be an \(N \) such that we can get from \(i \) to \(i \) in exactly \(N \) steps and get from \(i \) to some node \(j \in G \) in exactly \(N \) steps, where \(i \neq j \). We therefore get that \(G \) is not ergodic, a contradiction. We can conclude, then, that \(G \) contains a cycle with \(\tau < M \) nodes. \(\square \)
Now take a node $a \in G$ that is on a cycle of length $\tau < M$ (we may do so by Lemma 1). Furthermore, let $T(m)$ denote the set of nodes accessible from a in exactly m steps. We then get that $T(m) \subseteq T(m + \tau)$. To see this suppose $j \in T(m)$. We then have that there is a walk of length m from a to j, which we denote as w. We can then get from a to j in exactly $m + \tau$ steps by first walking from a to a by going around the cycle (this takes τ steps) and then walking from a to j along w. So we get that $j \in T(m + \tau)$.

It then follows from repeated application of the above fact that $T(0) \subseteq T(0 + \tau) \subseteq T(0 + \tau + \tau) \subseteq ...$ where $T(0) = \{a\}$ (since a is the only node accessible in 0 steps). The expression then simplifies to $T(0) \subseteq T(\tau) \subseteq T(2\tau) \subseteq ...$. Considering this series of inclusions, we now show that if $T(x\tau) = T((x + 1)\tau)$ for some positive integer x, then $T((x + 1)\tau) = T((x + 2)\tau)$. Assume that $T(x\tau) = T((x + 1)\tau)$ for some positive integer x. We have $T((x + 1)\tau) \subseteq T((x + 2)\tau)$ from our series of inclusions. Now to show that $T((x + 2)\tau) \subseteq T((x + 1)\tau)$, take some $i \in T((x + 2)\tau)$. We then have a walk of length $(x + 2)\tau$ in G from a to i, which we denote as w. Now consider the $((x + 1)\tau)$st node of w, which we denote as k. We get that $k \in T((x + 1)\tau)$ since we can reach it from a in $(x + 1)\tau$ steps by following w. Also note that since k is the $((x + 1)\tau)$st and i is the $((x + 2)\tau)$st node on w, we can go from k to i in $(x + 1)\tau - (x + 2)\tau = \tau$ steps. Then take such a walk of length τ from k to i and denote it as w'. Since $T(x\tau) = T((x + 1)\tau)$, we get that $k \in T(x\tau)$. We therefore have a walk of length $x\tau$ from a to k, which we denote as w''. We can then get from a to i in $(x + 1)\tau$ steps by first going from a to k in $x\tau$ steps along w'' and then going from k to i in τ steps by taking w'. We therefore have that $T((x + 2)\tau) \subseteq T((x + 1)\tau)$ so $T((x + 2)\tau) = T((x + 1)\tau)$.

Then by the above fact if $T(x\tau) = T((x + 1)\tau)$, then $T((x + 1)\tau) = T((x + 2)\tau)$, which then implies (again by the same fact) that $T((x + 2)\tau) = T((x + 3)\tau)$, which in turn implies $T((x + 3)\tau) = T((x + 4)\tau)$, and so on. So we get that if $T(x\tau) = T((x + 1)\tau)$ then $T(n\tau) = T((n + 1)\tau)$ for all $n \geq x$.

Now since G has M nodes and $T(0)$ has one node, we can have at most $M - 1$ strict containments in $T(0) \subseteq T(\tau) \subseteq T(2\tau) \subseteq ...$. So the first equality in the sequence can happen no later than $T((M - 1)\tau) \subseteq T((M)\tau)$. Since we have an equality in the sequence before or at $T((M - 1)\tau) \subseteq T((M)\tau)$, by the conclusion in the previous paragraph we get $T((M - 1)\tau) = T((M)\tau)$, and that $T(n\tau) = T((n + 1)\tau)$ for all $n \geq (M - 1)$. So by the transitivity of equality, $T(n\tau) = T((M - 1)\tau)$ for all $n \geq (M - 1)$.

Recalling the discussion in the Preliminaries, we have that for all $p \geq N_G$ we may go from any node i to any node j in exactly p steps in G. We may therefore take p' such that $p' \geq N_G$, $p' \geq (M - 1)\tau$ and p' is divisible by τ. We then get $\frac{p'}{\tau}$ is an integer. Because we may go from a to any node $j \in G$ in exactly p' steps, we get $T(p') = T((\frac{p'}{\tau})\tau)$ contains
all nodes of G. Then since $p' \geq (M - 1)\tau$, we get $\frac{p'}{\tau}$ is an integer larger than $M - 1$. So by the conclusion from the previous paragraph, we get $T(\frac{p'}{\tau}) = T((M - 1)\tau)$, which gives us that $T((M - 1)\tau)$ contains all nodes of G. Again recalling the discussion in the Preliminaries we get that for all $q \geq (M - 1)\tau$, $T(q)$ contains all nodes of G.

Given the way we chose a, we can therefore conclude that we may go from any node that is on a cycle of length $\tau < M$ to any other node in G in q steps, where $q \geq (M - 1)\tau$. So since $\tau \leq M - 1$, we get that if all nodes in G are on a cycle of length $\tau < M$, then we may get from any node i to any other node j in r steps, where $r \geq (M - 1)(M - 1)$.

Suppose, however, that there are z nodes, where $z \geq 1$, which are not on a cycle of length $\tau < M$. By Lemma 1, since each node is on a cycle, these must only be on a cycle of length M. Then the cycles with less than M nodes have at most $M - z$ nodes. Note that by Lemma 1 there is at least one node on a cycle of length $\tau < M$ since G has a cycle of length $\tau < M$. Then because we may go from such a node, to any other node in G in q steps, where $q \geq (M - 1)\tau$ (we concluded this in the previous paragraph), we may go from such a node, to any other node in G in q' steps, where $q' \geq (M - 1)(M - z)$.

Now consider a node b that is only on a cycle of length M. If we start at b and walk on the cycle of length M we will get to a node that is on a cycle of length $\tau < M$ (we know from before that such a node exists in G and the cycle of length M contains every node of G). And since there are z nodes that are only on a cycle of length M, it will take us at most z steps to get from b to a node, call it c, that is on a cycle of length $\tau < M$. From c we can then get to every other node in q' steps, where $q' \geq (M - 1)(M - z)$. So for b we can get to any other node in $(M - 1)(M - z) + z = M^2 - (z + 1)M + 2z$ or less steps. Recalling the discussion in the Preliminaries, we therefore have that we can get from b to any other node in q'' steps, where $q'' \geq (M - 1)(M - z) + z$. Since $M \geq 2$, $M^2 - (z + 1)M + 2z$ is maximized when z is smallest, namely when $z = 1$. We therefore have that $(M - 1)(M - z) \leq (M - 1)(M - z) + z \leq (M - 1)(M - 1) + 1$ (note $(M - 1)(M - z) \leq (M - 1)(M - 1) + 1$ for the case where the node is on a cycle of length $\tau < M$). So in the case where we have nodes in G that are only on a cycle of length M, we get that we may go from any node i to any other node j in r' steps, where $r' \geq (M - 1)(M - 1) + 1$ steps.

So then in all cases we have that we may get from any node i to any other node j in m steps, where $m \geq (M - 1)(M - 1) + 1$ steps. Hence we have the proof.

\[\square\]
Consider the graph of M nodes shown above. We first show that it is ergodic by showing that it is possible to get from any state i to any state j in exactly $M(M-1)$ steps. To do this first note that for any node i in graph other than 1 we may go from i to i in exactly M or $M-1$ steps (we call this going around the M or $M-1$ cycle), depending on whether we take the edge $(M,2)$ or not on our walk. Now take some nodes j,k in the graph. If j and k are the same node, we may get from j to k in exactly $(M-1)$ steps by walking around the cycle of length M, $M-1$ times. If j and k are not the same node then we have two cases. If k is not 1 then we can get from j to k in n steps by walking along the cycle of length M, where $n < M$. We then walk n times around the cycle of length $M-1$, and $M-1-n$ times around the cycle of length M, so by the end of the walk we end up at k. This walk takes $n + n(M-1) + (M-1-n)(M) = n(M) + (M-1-n)(M) = (M-1)(M)$ steps. If, on the other hand k is 1, then we may walk along the cycle of length $M-1$ from j to M in n' steps where $n' < M-1$ (remember j is not 1). Then walk $n'+1$ times around the cycle of length $M-1$, and $M-1-n'-1$ times around the cycle of length M, so we end up at M. Then step from M to 1. This walk takes $n'+(n'+1)(M-1)+(M-1-n-1)(M)+1 = (n'+1)(M)+(M-1-n-1)(M) = (M-1)(M)$ steps. So we conclude that the graph is ergodic.

We now show that it is not possible to get from any state i to any state j in $(M-1)(M-1)$ steps, namely that we cannot get from 1 to 1 in $(M-1)(M-1)$ steps. Suppose for contradiction that this is possible. Consider a walk of length $(M-1)(M-1)$ starting from 1. For the first $M-1$ steps we must walk on the cycle of length M, until we reach node M. We may then walk as we please, but we must end up back at node M since our final step must then be from M to 1. So after getting to M for the first time we walk around the cycle of length M some x number of times and around the cycle of length $M-1$ some y number of times before getting to 1. We then get that $M-1 + xM + y(M-1) + 1 = (x+1)M + y(M-1) = (M-1)(M-1)$ from which it follows that $\frac{x+1}{M-1}M + y = M - 1$. Then since $gcd(M-1,M) = 1$, $0 < x + 1 < M - 1$ (if $x+1 \geq M-1$ we would have $(x+1)M > (M-1)^2$ which would be a contradiction), and y
is a non-negative integer, we get that $\frac{x+1}{M-1}M + y$ is not an integer. So $\frac{x+1}{M-1}M + y \neq M - 1$, a contradiction. We therefore see that our bound is met with equality.

References