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Schottky Groups

In this poster we study the limit sets of Schottky groups composed of two Mobius maps a

and b and their inverses A and B. When composed together to create infinite ”words” such
as aBBaBAbAbabaB· · · these maps form limit sets whose nature can be determined based on
certain properties of the groups. The images seen below are represent approximations of the limit
sets of Schottky groups with carefully chosen parameters.

Mobius maps

A Mobius map T takes

z ! az + b

cz + d

,

where z, a, b, c, d 2 C. Let a be one such map and let A be its inverse, that is, aA(z) = Aa(z) = z.
We can think of a as the 2⇥ 2 matrix

T =
⇣
a b

c d

⌘
,

and indeed the composition of two Mobius maps is given by the product of their matrix repre-
sentations. The maps we are interested in are the maps that pair two circles together: given two
circles x and y, the map takes the outside of x to the inside of y. Taking two Mobius maps a and
b, whose circle pairs do not overlap, we calculate their inverses as A and B. Repeatedly applying
these maps to a point maps the whole complex plane into one of these four circles. The points
that result from all infinite combinations of a, b, A, and B are called the limit set of the generators
a and b, and the set of all the combinations themselves is called a Schottky group.

The images on this page are all the limit sets of specially chosen Schottky groups. We must
go over some complex arithmetic to understand how they are formed. In complex arithmetic,
division by 0 is allowed, with

±z

0
= 1

for z 2 C, z 6= 0. 1 is further defined by z ±1 = 1, i.e. �1 does not exist. Thus a Mobius
map can take any point in the complex plane to any other point, with 1 as one ”point”. By
setting a, b, c, d as desired, a Mobius map can represent any translation T (z) = z+a, any rotation
T (z) = kz with |k| = 1, and any scaling T (z) = kz, |k| > 1. It turns out that any Mobius map
T is conjugate to one of these three transformations, where T̂ = RTR

�1 is the conjugate of T
under some transformation R.

Every Mobius map can be classified as one of three types: loxodromic, parabolic, or elliptic.
A parabolic map is conjugate to a translation, an elliptic map is conjugate to a rotation, and a
loxodromic map is conjugate to a scaling. Parabolic maps, being translations, have the special
property that they have only one fixed point. A fixed point of a Mobius map is any point z 2 C
such that T (z) = z. If T = kz, then the fixed points of T are 0 and 1, since T (0) = 0 and
T (1) = 1. The fixed points of a transformation are given by the solutions to the equation

z =
az + b

cz + d

.

A parabolic transformation has only the fixed point z = 1. The above equation has only one
solution only when a + d = Tr T = ±2, where Tr T is the trace of T . If we let a and b be
parabolic and let their circle pairs be tangent, the composite map abAB has only one fixed point
at the tangent between the circles a and b. If we specify in addition that Tr abAB = �2, then the
limit set of the Schottky group generated by a and b is a continuous curve.

The limit sets of Shottky groups can be found by using a depth-first search (DFS) algorithm.
Of course we cannot explore all the infinite compositions of a, b, A, and B, but if we set a high
enough depth then the result is the limit set as far as we can tell. The images below were generated
using the DFS algorithm outlined on page 148 of Indra’s Pearls.

Apollonian Gasket

Somewhat surprisingly, the Apollonian gasket can be generated by finding the limit set of a

parabolic Schottky group. We generated figures 1 and 2 by using the DFS algorithm on the

generators
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⌘
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Figure 1: The Apolonnian gasket generated by a Schottky group.

Figure 2: A close-up view of the gasket.

The significance of trace

The generators a and b can be determined completely by Tr a, Tr b, and Tr ab. We can solve for

Tr ab from the first two, so by setting Tr a and Tr b we can create completely new generators.

Figures 3 and 4 were generated by Tr a = 1.87 + 0.5i, Tr b = 1.87 � 0.5i and Tr a = 1.87 +
0.1i, Tr b = 1.87 � 0.1i. Since they have complex traces these groups are loxodromic. Smaller

imaginary parts lead to tighter spirals, as shown by the difference between figure 3 and figure 4.

Figure 3: Jordan curve generated by Tr a = 1.87 + 0.5i, Tr b = 1.87� 0.5i.

Figure 4: Jordan curve generated by Tr a = 1.87 + 0.1i, Tr b = 1.87� 0.1i.
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