Thayer Prize Exam in Mathematics

for Dartmouth First-year students

Saturday April 30, 2022
10 AM-1 PM
If there are any exam scheduling conflicts, you are welcome to take it on Sunday May 1

PRINT NAME: \qquad

Acknowledgment: Some of the problems are inspired by problems in recent math competitions in the US and in Russia, and by problems from other sources.

Honor Code: You are not allowed to give or receive any help on this exam. Using calculators or computers is not allowed. You have 3 hours to work on the exam.

Grader's use only

1. $\quad / 10$
2. $/ 10$
3. /10
4. /10
5. /10
6. /10
7. /10
8. /10
9. /10

Total: _ / 90
(1) Let $A B C$ be a triangle such that for every point P inside of it one can construct a triangle with the sides equal to the vectors $P A, P B$ and $P C$. Show that the triangle $A B C$ is equilateral.
(2) Let A, B be two square matrices such that $A+B=A B$. Prove that the matrices commute that is $A B=B A$.
(3) Let $S^{1}=\left\{e^{i \theta}: \theta \in[0,2 \pi)\right\}$ be the unit circle in the complex plane, equipped with the arclength distance $d\left(e^{i \theta}, e^{i \phi}\right)=\min \{|\theta-\phi|, \pi-|\theta-\phi|\}$. Consider the map $f: S^{1} \rightarrow S^{1}$ given by $f\left(e^{i \theta}\right)=e^{3 i \theta}$. Fix an angle $\alpha \in(0, \pi / 2)$. Show that for every point $p \in S^{1}$ and $\epsilon>0$ there exists a point $q \in S^{1}$ with $d(p, q)<\epsilon$ such that $d\left(f^{k}(p), f^{k}(q)\right) \geq \alpha$ for some integer $k>0$.
(4) Consider the initial-value problem $x^{\prime}(t)=f(x(t)), x(0)=x_{0}$, where $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function satisfying $f\left(x_{0}\right)=0$ for some point x_{0}. Show that a sufficient condition for uniqueness of the solution $x(t)=x_{0}$ is that $\lim _{\epsilon \rightarrow 0} \int_{x_{0}}^{x_{0}+\epsilon} \frac{d x}{f(x)}$ is infinite or does not exist.
(5) Find all integers n such that $\left(n^{2}+1\right)$ divides $\left(n^{2}-3 n\right)$.
(6) Recall that a complex root of unity is a complex number $z \in \mathbb{C}$ such that there exists a positive integer $n \geq 1$ such that $z^{n}=1$.

Find all complex roots of unity w, z such that

$$
z^{5}+w^{5}=1
$$

(7) You have a sack containing n objects, all distinct, and you define a game as follows. You draw one object uniformly at random and replace it. You draw a second time and replace it. You then draw a third item. You win the game if you happen to draw one of the n objects exactly two times; otherwise, you lose.

You play this game n times. Calulate the expected number of wins as $n \rightarrow \infty$.
(8) Consider the modified Harmonic series $\sum_{i=1}^{\infty} \frac{1}{i}$ with all the terms containing the digit 9 deleted. So that the terms $\frac{1}{9}, \frac{1}{19} \frac{1}{90}, \frac{1}{91}$ are deleted. Prove or disprove that this modified series is convergent.
(9) Two marksmen, one of whom ("Acuron") hits a certain small target 75% of the time and the other ("Blunderon") only 25%, aim simultaneously at that target. One bullet hits. What's the probability that it came from Acuron?

