Let \mathcal{O} be a domain in which every nonzero ideal can be factored into a (unique) product of prime ideals, and let K be its field of fractions. We will show that \mathcal{O} is a Dedekind domain.

(a) A fractional ideal a of \mathcal{O} is a nonzero \mathcal{O}-submodule of K such that there exists nonzero $d \in \mathcal{O}$ such that $da \in \mathcal{O}$. A fractional ideal a is invertible if there exists a fractional ideal b such that $ab = \mathcal{O}$. Show that if a fractional ideal is invertible, then the inverse is unique and it is equal to $a^{-1} = \{x \in K : xa \subseteq \mathcal{O}\}$.

(b) Show that any prime factor of a principal ideal is invertible, and that any factorization of an ideal into invertible ideals is unique.

(c) Show that every nonzero prime ideal of \mathcal{O} is invertible, and conclude that every nonzero fractional ideal of \mathcal{O} is invertible.

(c1) Let $p \in \mathfrak{p}$ be nonzero, and conclude that $\mathfrak{q} \subseteq (\mathfrak{p}) \subseteq \mathfrak{p}$ with \mathfrak{q} invertible.

(c2) Let $a \in \mathfrak{p}\setminus\mathfrak{q}$, and consider the factorization of the ideals $\mathfrak{q}+a\mathcal{O}$ and $\mathfrak{q}+a^2\mathcal{O}$. Show that every such prime factor contains \mathfrak{q}, so we can consider these factorizations in the quotient ring \mathcal{O}/\mathfrak{q}. Conclude by unique factorization that $\mathfrak{q}+a^2\mathcal{O} = (\mathfrak{q}+a\mathcal{O})^2$.

(c3) From

$$\mathfrak{q} \subseteq \mathfrak{q} + a^2\mathcal{O} = (\mathfrak{q} + a\mathcal{O})^2 \subseteq \mathfrak{q}^2 + a\mathcal{O}$$

show that $\mathfrak{q} \subseteq \mathfrak{q}^2 + a\mathfrak{q}$

and then that equality holds.

(c4) From the invertibility of \mathfrak{q}, derive a contradiction; conclude that $\mathfrak{q} = \mathfrak{p}$ and thus \mathfrak{p} is invertible.

(d) Show that \mathcal{O} is integrally closed. [Hint: if $\alpha \in K$ is integral, then the ring $\mathcal{O}[\alpha]$ is a fractional ideal of \mathcal{O} and $\alpha\mathcal{O}[\alpha] \subseteq \mathcal{O}[\alpha]$.

(e) Let a, b be fractional ideals of \mathcal{O}. Show that $a \supseteq b$ if and only if there exists a fractional ideal \mathfrak{q} such that $b = \mathfrak{q}a$. [Hint: Reduce to the case where $a, b \subseteq \mathcal{O}$. Argue by induction on the number of prime factors dividing a.]

(f) Conclude that \mathcal{O} is Noetherian and every prime ideal is maximal.