Plan:
defn. S, D.
change of var.
jump relations.
DGF formulation
cont. homolog.

Single-layer operator: given body force \(F \),
\[
S(x) := \int_{\partial D} \phi(x,y) \psi(y) \, dy,
\]
int. op.
interpret: \(\phi \) - charge density
\(\psi(x) \) - potential due to charge \(\phi \)
(recall charge density \(\psi \) on \(\partial \Omega \), body forces \(\phi \).

Double-layer operator: given \(T \)
\[
T(x) := \int_{\partial D} \phi(x,y) \psi(y) \, dy,
\]
int. op.
interpret: \(\phi \) - charge density
\(\psi(x) \) - potential due to charge \(\phi \)
(recall charge density \(\psi \) on \(\partial \Omega \), body forces \(\phi \).

GRF state, \(x \in \Omega \), \(u(x) = \int_{\partial D} \phi \psi \), \(\phi \), \(\psi \) from body forces.

Cor 1. Choose \(L = \partial \Omega \), then \(u(x) = \operatorname{mean} \int_{\partial D} \phi \psi \) on \(\partial \Omega \).

2. Max-min of harmonic function must occur on \(\partial \Omega \) (unless \(u = \text{const} \)).
pf: suppose max at \(x \in \Omega \), \(\exists \phi \psi \) with \(r > 0 \), but \(u(x) = \text{mean over } \partial \Omega \), contradiction, unless \(u = \text{const.} \)

3. Dirichlet EVP \(\Delta u = 0 \) in \(\Omega \), \(u = f \) on \(\partial \Omega \), has at most 1 soln.
pf: suppose \(u, v \) solns., then \(u-v = 0 \) on \(\partial \Omega \), by max principle \(u-v = 0 \) in \(\Omega \).

Recall uniqueness of \(u \) at approxf. \(\Omega \), \(\partial \Omega \), show \(u = S \phi \) for \(\phi \) = 1, has constant h, k-h in \(\Omega \), \(\phi \) cont. \(\Omega \), \(\partial \Omega \), due to surface charge.

Then, let \(\Omega \) be \(C^1 \) cont. (ie \(\psi \) \in \(C^1 \)), \(\phi \in \(C^2 \)), \(u = S \phi \).

Then \(u \) cont. in \(\mathbb{R}^2 \); for \(x \in \Omega \), \(u(x) := \int_{\partial \Omega} \phi \psi \, dy \), exists as improper int.
Theorem 1. If \(D \subset \mathbb{R}^2 \) is a simply connected domain and if \(\mathbf{F} : D \to \mathbb{R}^2 \) is a smooth vector field on \(D \), then the line integral of \(\mathbf{F} \) around any closed curve \(\Gamma \) in \(D \) is zero.

Proof. Let \(\Gamma \) be a closed curve in \(D \). By the Fundamental Theorem of Line Integrals, the line integral of \(\mathbf{F} \) around \(\Gamma \) is equal to the flux of \(\mathbf{F} \) through the area enclosed by \(\Gamma \).

Flux of \(\mathbf{F} \) through \(\Gamma \):

\[
\Phi(\mathbf{F}) = \iint_D \mathbf{F} \cdot \mathbf{n} \, dA
\]

Since \(D \) is simply connected, \(\Phi(\mathbf{F}) = 0 \) by the property of simply connected domains.

Thus, the line integral of \(\mathbf{F} \) around any closed curve \(\Gamma \) in \(D \) is zero.

\[\square \]
\(\mathcal{R}(ii) \) is integral eqn in \(C^2(\Omega) \) for \(\tau \) given \(v \) (boundary values approaching from inside):

\[
(I - 2D)\tau = -2v - 2^{nd}\text{kind IE}
\]

Thus, if \(\mathcal{R}(i) \) has soln \(\tau \) in \((I - 2D)\tau = -2f \), then \(\tau = Dv = \Delta v = 0 \) in \(\Omega \)

(proof for all \(\tau \) solns & interior Dirichlet BVP) \(\tau = f \) on \(\partial \Omega \)

(follows from \(\mathcal{R}(ii) \))

Numerical method: While solving \(\text{(x)} \) to get \(\tau \) at nodes, then use these nodes to approx. \(v \)

Adv: reduced 2nd to 1st problem! \(v \) small lin. system, don't need to compute all \(\tau \) unless want.

Disadv:

We can say more: sch. kernel of \(D \) is continuous for \(C^2 \) domains for \(C^2 \) domains \(\Rightarrow D \) compact op.

Intuitively:

Continuity of \(\frac{\partial \phi(x)}{\partial x} \) only

Proof:

\[
y(t), t \in [0, 2\pi]
\]

parametric \(\tau \)

\(y(t) \in \mathbb{R}^3 \)

If \(\Omega \) is \(C^2 \), means \(\tilde{y}(t) = \begin{pmatrix} \tilde{y}_1(t) \\ \tilde{y}_2(t) \\ \tilde{y}_3(t) \end{pmatrix} \) continuous (bounded) vector frame.

Also demand \(\tilde{y}(t) > 0 \) \(\forall t \) - speed nonvanishing.

\(D \)'s kernel \(k(s,t) = \frac{1}{2\pi} \frac{\tilde{y}(t) \cdot (y(s) - y(t))}{\|y(s) - y(t)\|^2} \) (last line): cont. for \(s \neq t \)

\(\lim_{s \to t} k(s,t) \) need l'Hopital rule twice:

\[
\frac{\partial}{\partial t} \tilde{y}(t) = \begin{pmatrix} \tilde{y}_1'(t) \\ \tilde{y}_2'(t) \\ \tilde{y}_3'(t) \end{pmatrix}, \quad \frac{\partial}{\partial s} \tilde{y}(t) = \begin{pmatrix} \tilde{y}_1'(t) \\ \tilde{y}_2'(t) \\ \tilde{y}_3'(t) \end{pmatrix}
\]

\[\lim_{s \to t} k(s,t) = \tilde{y}(t) \cdot \tilde{y}'(t) \]

[Finish & debug sigs from 2006 notes?]
Double-layer given as \(\Phi \), \(\Phi \) in \(H^2 \), \(\int_{\partial \Omega} \Phi \) is unique in \(\mathbb{R} \).

Thus \(\Phi = \mathcal{D} \mathcal{L} \) solves \(\text{BVP} \), so is the unique solution.

Name, math: \(\text{N trick on } \Phi \) to get \(\mathcal{L} \) at nodes, then use same tools to approximate \(\Phi \) for all \(\xi \).

Adv: reduced Ad to Ad prob, much fewer degrees of freedom (size of linear system).

Disadv: linear sys is dense, direct discretization of BVP gives large sparse, system.

Can say more about \(\mathcal{L} : C(\Omega) \to C(\partial \Omega) \) : This kernel continuous for \(C^2 \) domains.

Why cont? - continuity of \(\frac{\partial \Phi(y)}{\partial y} \) are circles passing through \(y \), tangent to \(\partial \Omega \).

If \(\partial \Omega \) has constant curvature, \(\mathcal{L} \) approx. \(y \) on one of these.

kernel of \(\mathcal{L} \) is \(k(x,t) = \frac{1}{4\pi} \frac{\delta(t) \cdot (y(t) - y(x))}{|y(t) - y(x)|^2} \)

\(\lim_{x \to t} k(x,t) \) top & bottom vanish \(\Rightarrow \) Hopital: \(\frac{dx}{dt} \text{ top} = \delta(t) \cdot y(t) \to 0 \) \(\Rightarrow \).

\(\frac{dy}{dt} \text{ bottom} = 2y(t) \cdot (y(t) - y(x)) \), \(\frac{dx}{dt} \text{ bottom} = 2y(t)^2 \)

So \(\lim_{x \to t} k(x,t) = \frac{1}{4\pi} \frac{\delta(t) \cdot y(t)}{|y(t)|^2} = -\frac{K(x)}{4\pi} \)

\(K = \text{curvature} \geq 0 \) (convex).

Need for \(k(x,t) \) in Nyström.
Thus: $I - 2D$ is injective, i.e. trivial nullspace, i.e. I not equal to $2D$.

Cor: by Fredholm alternative in $C(\Gamma_0)$, $(I - 2D)u = f$ has unique soln. u.

- soln to BVP exists $\forall f \in C(\Gamma_0)$.
- Normally, such BVPs, Fredholm alt., were first such proofs.

Other BVPs for Laplace eqn:

1. *Dirichlet:
 \[
 \begin{align*}
 \Delta u &= 0 \text{ in } \Omega, \\
 u &= f \text{ on } \partial \Omega \\
 \end{align*}
 \]
 - has unique soln. $\forall f$.
 - Follows from $\hat{u}(x) = \hat{f}(x)$, "Kelvin transform of u."
 - Also being harmonic in $\Omega^\circ = \{ x : x \in \hat{\Omega} \setminus \partial \Omega \}$.
 - Interior problem, unique, exists.

2. *Neumann:
 \[
 \begin{align*}
 \Delta u &= 0 \text{ in } \Omega, \\
 \frac{\partial u}{\partial n} &= g \text{ on } \Gamma \\
 \end{align*}
 \]
 - has non-unique soln. if u soln, so is $u + c$.

 \[
 \int_{\Delta} g \, dA = 0 \\
 \text{terms out sufficient condition for soln. to exist}
 \]

3. *Robin:
 \[
 \begin{align*}
 \Delta u &= 0 \text{ in } \Omega, \\
 \frac{\partial u}{\partial n} + \gamma u &= g \text{ on } \Gamma \\
 \end{align*}
 \]
 - has unique soln. $\forall f$. but not always.

eg. Folland PDE book.

Harmonic Waves:

- *Helmholtz eqn.* $\Delta + k^2 u = 0$
- *Wave eqn.* $u = \frac{1}{2} \frac{c}{k} z$, $\phi = u - c t$, $\omega \sqrt{\Delta}$
- *Schrödinger eqn.* $i \hbar \frac{\partial u}{\partial t} + \frac{1}{2m} \Delta u = \frac{\hbar^2}{2m} \psi^2$

\[k = \text{wavenumber} = \frac{2\pi}{\text{wavelength}}.\]

\[u = \text{wavefront.}\]

\[\phi = \text{wavepacket.}\]

\[\rho = \text{waveparticle.}\]

\[\rho = \text{wavefunction.}\]

Interior BVP

\[
\begin{align*}
\Delta u &= 0 \text{ in } \Omega, \\
\text{driving a cavity on its body.}
\end{align*}
\]

- unique solution unless \(\Delta u_1 = \text{Dirichlet in } \Omega \) has non-trivial soln, i.e. $k^2 \lambda$ is eigenvalue of $-\Delta$ w/ Dirichlet BCs.

Consequence: Δ compact. E_k discrete. k_1 limit pt. is ∞.

- we'll return to these Dirichlet eigenvalues later.
Exter. BVP:
\[(\Delta + k^2) u \mathbf{z} = 0 \quad \text{in} \quad \mathbb{R}^3 \setminus \mathcal{S}, \quad d=2,3, \ldots \]
\[u \mathbf{z} = f \quad \text{on} \quad \partial \mathcal{S} \]

\[u \mathbf{z} = \mathcal{F}(\mathbf{r}) = \sum_{\lambda} a \mathbf{\Phi}_\lambda \mathbf{e}^{-ik \mathbf{r} \cdot \mathbf{\lambda}} \quad \text{for} \quad d=2 \]

\[\text{has unique soln.} \quad \forall \mathbf{r} \in \mathcal{S}. \quad \text{(proof OK Thm 3-7)} \]

Scattering of waves: say incident wave \(u^i : \mathbb{R}^2 \to \mathcal{C} \) satisfies \((\Delta + k^2) u^i = 0 \) in \(\mathbb{R}^2 \).

Then if \(f = -u^i \mathbf{\nabla} \cdot \mathbf{z} \), \(u = u^i + u^s \) solves \((\Delta + k^2) u = 0 \) in \(\mathbb{R}^2 \setminus \mathcal{S} \).

\[u = 0 \quad \text{on} \quad \partial \mathcal{S} \]

with obstacle generating only outgoing waves.

Solving Helmholtz BVP:
Fundamental soln.
\[\mathcal{F}(x,y) = \frac{1}{4\pi} \mathcal{H}_0^{(1)}(k|x-y|) \quad d=2. \]

\text{outgoing Hankel func, a special func, MATLAB/mompy can evaluate.}

As \(r=|x-y| \to 0 \), \(\mathcal{F}(x,y) = -\frac{i}{2\pi} \ln|x-y| + O(1) \), i.e. same sing. as for Laplace's eqn.

\[\Rightarrow \quad \text{All jump relations same as before} \]

\text{Take-home msg: can replace Laplace & Helmholtz & BIEs same as before! (HW6)}

When Hankel from?
\[u(x,y) = f(kr) e^{i\mathbf{\epsilon} \cdot \mathbf{r}} \quad \text{sep. of var.; fix } \mathbf{\epsilon} \in \mathbb{C}, \text{ & find } f(\mathbf{\epsilon}) \text{ sat. Helmh. Eqn.} \]

0: \(k^2 \mathbf{\nabla}^2 u + k^2 u = f \quad \text{Bessel's eqn., w/ order} \]

\[H_m^{(0)}(z) \text{ is a soln. w/ certain}\]

\[\text{singularity at } z=0 \text{ & outgoing.} \]

\[\text{eq.} \quad H_0^{(0)}(z) = \sqrt{\frac{2}{\pi z}} e^{i(z - \frac{\pi}{4})} \left[1 + O\left(\frac{1}{z}\right) \right], \quad z \to \infty \quad \text{asymptotic} \]

\[\text{decaying complex exponential.} \]

\[\text{fact: } H_0^{(0)}(kr), \text{ hence } \mathcal{F}(x,y) \text{ valid for } x,y \in \mathbb{R}^3, \text{ sat. radiation condition} \]