Where do Hankel functions come from? \(u \text{ s.t. } (Q, \bar{Q}) \bar{Q}(r, y) = 0 \text{ for } V \text{ everywhere} \) \(y > 0 \).

Call \(u = \bar{Q}(r, y) \), want s.t. Helmholtz.

\[
\begin{align*}
u(r, \theta) &= e^{i\theta} \text{ polarr sol. of var., } r, \theta \in \mathbb{R} \text{ so single-valued, solve for } f : \\
0 &= (\Delta + k^2)u = \frac{1}{r} \frac{\partial}{\partial r} (r \frac{\partial u}{\partial r}) + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} + k^2 u = (k f'' + \frac{k f'}{r} + \frac{f'}{r^2} + k^2 f) e^{i\theta} + O(1) \\
\text{cancel } e^{i\theta} \text{ gather } k^2 = z : \\
z f'' + k f' + (z^2 - y) f = 0 \quad \text{Bessel's eqn., order } \nu \end{align*}
\]

Large argument: \(H^{(1)}_\nu(z) = \sqrt{\frac{2}{\pi z}} e^{i (z - \frac{\pi}{2} - \frac{\nu \pi}{2})} + O(\frac{1}{z}) \quad \text{pinned at Collo Q1-Q2} \).

Are also solutions regular at \(r = 0 \): \(J_\nu(z) \) Bessel functions.

By nonuniqueness in 2D, for scattering.

In 1900 you saw out by BIE handled by ghost of complementary BVP: let \(u = \Omega \), solve out BVP if \(\Omega(x + 2D) \bar{Q} = 2 \Omega = -2u \text{ from far field} \).

Huygens' is: \(T \), singular for certain set of \(k \).

\[H_{\nu}^1(z) \text{ is soln. of log singular } \sim z^{-\nu} \text{ for some } \nu < 0 \]

\[H_{\nu}^1(z) \text{ is real, } \text{if } \nu \text{ is real} \text{ by J13.} \]

\[\text{Suppose } \Omega \neq 0 \text{ sat. } (I + 2D) \bar{Q} = 0 \text{ in } \Omega \] \(\Omega = 0 \text{ in } \Omega \) then \(\phi \) is interior Neumann eigenfunction. (acoustic resonance of cavity ||\(u \).)

Then by CRF, \(\Delta \phi_{\nu} - k^2 \phi_{\nu} = 0 \text{ in } \Omega \).

Take \(\nu \rightarrow -2D \) & use J13: \(-\Delta \phi_{\nu} - \phi_{\nu} = 0 \text{ in } (I + 2D) \bar{Q} = 0 \).

Since \(\phi_{\nu} \text{ continuos } \Omega \text{ by CRF}, \text{ dim } \text{Null} (I + 2D) = 0 \text{ singular, not solvable } \).

Shaw equality exist only if \(k^2 \) is \(k^2 \text{ eigenvalue of } \Omega \).

\[\text{Project: } \text{use small expansion to link such } k^2. \]

Fix \(\nu > 0 \text{ eq. } (\bar{Q} - i\nu S) \bar{Q} = 0 \).

Gradschitz-Weaver, Long, Parish '60's.

\[\text{Then } (I + 2D - 2i\nu S) \bar{Q} = 0 \] \[\text{J13 as before } \bar{Q} \text{ s.t. } \bar{Q} \in \Omega \text{ for jump for } \Sigma_{\text{val}}. \]

Then: \(I + 2D - 2i\nu S \) injective \(\forall k > 0 \).

\[\text{pf: Let } \bar{Q} \text{ solve } (\bar{Q} - D - i\nu S) \bar{Q} = 0 \text{ then } \nu k = 0, \text{ then } \nu k = 0 \text{ by construction of } BIE (2D \bar{Q} = 0). \]
\[\Rightarrow V = 0 \text{ in } \mathbb{R}^n \text{ by uniqueness of solu. Dir. BVP for potential solns.} \]

\[\Rightarrow V_n = 0 \text{ on } \partial \Omega \]

\[\begin{cases}
V_{1,3} = 0 \\ V_{2,4} = \nabla \cdot V = -i \gamma \varepsilon
\end{cases} \quad (a) \]

\[\begin{align*}
\int_{\partial \Omega} \nabla \cdot \nabla V \cdot ds &= \int_{\partial \Omega} \nabla V \cdot \nabla \cdot ds \\
&= -i \gamma \int_{\partial \Omega} \nabla V \cdot ds
\end{align*} \]

Take Im part: \(\gamma = 0 \).
QED.

Notes:

1) Call this scheme robust since widely used finds; similar exist for Neumann BVP, transmission, etc.

2) Quadrature of BIE near borders: \(S \) has log singularity near diagonal.
 Approaches: a) use correction of periodic trig. scale weights, so omit diagonal i.e. integrate smooth + log i.e. smooth to high order.
 Kapur-Rokhlin 93/,

 b) find exact weights to integrate log: smooth globally: product quadrature.
 Keast 91, better but more analytic work.

Then also make high order \(\text{H}46 \); 6th order, unlike lagrange 6th degree exponential.

Fast Algorithms:

- eg \(N = 10^6 \): can’t even fill Nyström matrix \(A(10^6 \times 16 \text{ byte} = 16 \text{,000 GB}) \)
 rounded by complex gauss \(\mathfrak{S} \)

 or 2d surface.

 Instead: iterative methods: eg. \text{GMRES}^1 \ (\text{NLA Ch.35}), each it. solve \(x \rightarrow A x \)

 converge, stop when residual order \(\|A x - b\| \) small enough for you.

 For well-conditioned \(2^{\text{nd}} \)-kind BIE, take only 10-20 iters to get many digits \((10^{-11})\) accuracy.
 But \(1^{\text{st}} \)-kind terrible convergence rate, useless.

 So now, whole scheme to solve \(x \rightarrow A x \) in \(\mathcal{O}(N^3) \) since \(x \rightarrow A x \) is

 dense \(\mathbb{R}^n \).

Can we apply Nyström method to a vector \(x \rightarrow A x \) faster than \(\mathcal{O}(N^3) \)? Yes!
Let $y_i \in \mathbb{R}^n$ be set of nodes. The problem is to find A has elements $a_{ij} = \frac{1}{\ln |y_i \cdot y_j|}$ if $i \neq j$.

This is the off-diagonal part of Nyström matrix for \mathcal{S} operator (lifting), without weights w_j.

In most cases, a low-rank curve is used, with $N = 100$ for small (~ 10) & independent of N. The low-rank requires source - target separation.

A low-rank means $\tilde{A} = P Q = \sum_{i=0}^{10} N_i^{10} - 100 \approx$ via SVD (but that's too slow in practice).

Fix an off-diagonal block, call it size $N \times N$: sources y_i, $j = 1 \ldots N$, target z_i, $i = 1 \ldots N$.

We wish to compute $u_i = \sum_{j=1}^{N} x_j \ln \frac{1}{|x_j - y_j|} = (Ax)_i$, $i = 1 \ldots N$.

Potential due to sources $u(z) = \sum_{j=1}^{N} x_j \ln \frac{1}{|x_j - y_j|}$ harmonic for $z \neq y_j$, $j = 1 \ldots N$.

Goal is eval $u \in$ target z_i, $i = 1 \ldots N$.

Thus (multiple expansion), outside a disc B centered at 0, containing all y_j:

$$u(r, \theta) = c_0 \ln \frac{1}{r} + \sum_{n \geq 1} \left(a_n \cos n \theta + b_n \sin n \theta \right) r^{-n}$$

or with $z = re^{i \theta}$, $u(z) = \text{Re} \left\{ c_0 \ln \frac{1}{z} + \sum_{n \geq 1} \left(a_n z^{-n} + b_n z^{-\bar{n}} \right) \right\}$

convergent in $\mathbb{C} \setminus B$.

```latex
\begin{align*}
\end{align*}
```

Current expansion