Last time: $O(N^2)$ alg. for applying interaction matrix A_i^j: $O(N^3)$ (old液压 kernel) between N particles
Assuming: uniformly distributed in exchange.

Trick: nearby seen directly.

Relies on a matrix coming from elliptic PDE.

Why is $x \rightarrow Ax$ important to apply? (Krylov methods: apply A repeatedly)

- Enable iterative soln.
- Other apps: compute forces in large, gravitational, fluid (velocity), molecular (electrostatic)

note: methods are either iterative or direct.

Tinny steps to evolve:

- Preparatory work
- Iteration every Δt needed...

Bottleneck: each target box has many (M) targets at which many (N) multipole terms have to be evaluated.

Better: combine/Multipole expansion before evaluating at targets in box.

→ 2/28/11 (see next page)

Hierarchical (multilevel) version:

Tree-code:

<table>
<thead>
<tr>
<th>Level 0</th>
<th>Level 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Box 1</td>
<td>Box 2</td>
</tr>
<tr>
<td>Box 3</td>
<td>Box 4</td>
</tr>
</tbody>
</table>

Adaptivity:

- What if not uniform? Subdivide to different levels until $O(N)$ change for box.

Fast multipole method (FMM):

- Gather multipole terms on top level
- Separate local terms on lower levels
- Evaluate local terms on leaves

Bookkeeping: tricky at each level there are boxes not well-sep, for M2L, how to do many child boxes integration lists.

Effort: $O(N)$, Greengard-Kokhlik '87. Also adaptive version. Bottleneck is much smaller!
Where is the bottleneck? If could make smaller box size L, less interaction could be done directly. But curiously would have more boxes hence more effort evaluating all their dipole exps at the (N) distant pts!

Need a way to combine dipole exps so all target pts in a box can be evaluated from single expansion… a "local expansion" = Taylor expansion.

Say $z_0 \in \mathbb{C}$ is source box center, rep. by dipole. @ z_0, $|z_0| > 2R$, then can be rep. by Taylor

Consider terms in dipole,

eg monopole $\ln \frac{1}{z-z_0} = \ln \frac{1}{z_0} - \ln \left(\frac{z}{z_0} - 1\right) - \ln (x-y, \bar{z})$ for l.c.1.

$$\ln \frac{1}{z_0} = \frac{1}{z_0} - \frac{1}{2z_0} z + \frac{1}{2z_0^2} z^2 - \frac{1}{3z_0^3} z^3 + \ldots$$

N^m-pole $(z-z_0)^m$ has

0th Taylor coeff: $c_0 = \frac{(z-z_0)^m}{z_0} \big|_{z_0} = (-z_0)^m = (-1)^n z_0^{-m}$

1st coeff: $c_1 = \frac{\partial}{\partial z} \bigg|_{z_0} (z-z_0)^m = -n (z-z_0)^{m-1} \bigg|_{z_0} = -n (-z_0)^{-m-1} = (-1)^n z_0^{-m-1}$

\cdots

mth coeff: $c_m = \frac{1}{m!} \bigg|_{z_0} \frac{\partial^m}{\partial z^m} (z-z_0)^m = \frac{1}{m!} (-1)^n n(n-1) \cdots (n+m-1) z_0^{-m-n}$

So,

Thm (M2L, "multipole to local") : dipole exp, $u(z) = c_0 \ln \frac{1}{z-z_0} + \sum_{n=1}^\infty c_n (z-z_0)^{-n}$ can be written as Taylor expansion $\sum_{n=0}^\infty a_n z^n$, abs. convergent in $|z| < |z_0|$, with coeffs

$$a_0 = c_0 \ln \frac{1}{z_0} + \sum_{n=1}^\infty \frac{c_n}{n} z_0^{-n}$$

$$a_n = c_n (-)^n \frac{n+1}{n!} z_0^{-n} + \sum_{n=1}^{\infty} \frac{(-1)^n}{n!} \frac{c_n}{n-1} z_0^{-n-m} , m = 1, 2, \ldots$$

Thm (error of M2L): if source $\mathcal{S}_1, \mathcal{S}_2$ lie in $|z_0| < R$, $|z_0| > b+R$, for some $b>R$, then error of truncating above sum to p terms is, in $|z| < R$, bounded by $\mathcal{C}(\sum_{j=1}^p |x_j|) (R)^p$.

Proof: Green's-Rachlin '87. Same exponential convergence rate as before.

For cial. can now becomes: for each target box compute all coeffs due to each dipole src box s_{2m}, evaluate local (Taylor) exp at all targets in the target box. Effort is $O(p^2 M^2)$ since p^2 to map c_n's to a_m's, M^2 translation z_0 (many are) + $O(p N)$ eval. p^2-order local exp at all N target pts.

Total effort now $p N + \frac{9 N^2}{M} + p^2 M^2 + p N \quad \text{balance}, \quad M = N^{1/2}$

Overall scaling $O(p^2 N^{3/2})$

$= O(N^{3/2})$ if fixed p. Best yet. Can do even better w/ hierarchical version: PAIM.