Math 128: Combinatorial representation theory of complex Lie algebras and related topics
Recommended reading

For the first while:

2. W. Fulton, J. Harris, *Representation Theory: A first course*.
3. J. E. Humphreys, *Introduction to Lie Algebras and Representation Theory*.

Later:

5. H. Barcelo, A. Ram, *Combinatorial Representation Theory*.

...among others
The poster child of CRT: the symmetric group

Combinatorial representation theory is the study of representations of algebraic objects, using combinatorics to keep track of the relevant information.
The poster child of CRT: the symmetric group

Combinatorial representation theory is the study of representations of algebraic objects, using combinatorics to keep track of the relevant information.

What are the algebraic objects?

Let F be your favorite field of characteristic 0. (Really, fix $F = \mathbb{C}$.)

Recall that an *algebra* A over F is a vector space over F with an associative multiplication

$$A \otimes A \to A$$

(tensor product over F just means the multiplication is bilinear).
The poster child of CRT: the symmetric group

Combinatorial representation theory is the study of representations of algebraic objects, using combinatorics to keep track of the relevant information.

What are the algebraic objects?
Let F be your favorite field of characteristic 0. (Really, fix $F = \mathbb{C}$.) Recall that an algebra A over F is a vector space over F with an associative multiplication

$$A \otimes A \rightarrow A$$

(tensor product over F just means the multiplication is bilinear).

Favorite examples:

1. Group algebras (today)
2. Enveloping algebras of Lie algebras (next)
Representations

A *homomorphism* is a structure-preserving map. A *representation* of an F-algebra A is a vector space V over F, together with a homomorphism

$$\rho : A \to \text{End}(V) = \{ \text{ } F\text{-linear maps } V \to V \}.$$

The map (equipped with the vector space) is the representation; the vector space (equipped with the map) is called an A-*module*.
Representations

A *homomorphism* is a structure-preserving map. A *representation* of an F-algebra A is a vector space V over F, together with a homomorphism

$$\rho : A \to \text{End}(V) = \{ \text{ } F\text{-linear maps } V \to V \}.$$

The map (equipped with the vector space) is the representation; the vector space (equipped with the map) is called an A-module.

Example

The permutation representation of the symmetric group S_n is $V = \mathbb{C}^k = \mathbb{C}\{v_1, \ldots, v_k\}$ together with

$$\rho : S_k \to \text{GL}_k(\mathbb{C}) \quad \text{by} \quad \rho(\sigma)v_i = v_{\sigma(i)}.$$
Representations

A homomorphism is a structure-preserving map. A representation of an F-algebra A is a vector space V over F, together with a homomorphism

$$\rho : A \rightarrow \text{End}(V) = \{ \text{ } F\text{-linear maps } V \rightarrow V \}. $$

The map (equipped with the vector space) is the representation; the vector space (equipped with the map) is called an A-module.

Example

The permutation representation of the symmetric group S_n is $V = \mathbb{C}^k = \mathbb{C}\{v_1, \ldots, v_k\}$ together with

$$\rho : S_k \rightarrow \text{GL}_k(\mathbb{C}) \quad \text{by} \quad \rho(\sigma)v_i = v_{\sigma(i)}. $$

A simple module is a module with no nontrivial invariant subspaces.
Permutation representation of S_3

On the basis $\{v_1, v_2, v_3\}$:

$$
1 \mapsto \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad (12) \mapsto \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad (23) \mapsto \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}
$$

$$(123) \mapsto \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \quad (132) \mapsto \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \quad (13) \mapsto \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}
$$
Permutation representation of S_3

On the basis $\{v_1, v_2, v_3\}$:

$1 \mapsto \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
$(12) \mapsto \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
$(23) \mapsto \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$

On the basis $\{v, w_2, w_3\}$:

$1 \mapsto \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
$(12) \mapsto \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
$(23) \mapsto \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$

$(123) \mapsto \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & -1 \\ 0 & 1 & 0 \end{pmatrix}$
$(132) \mapsto \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & -1 \end{pmatrix}$
$(13) \mapsto \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & -1 \end{pmatrix}$
An algebra is *semisimple* if all of its modules decompose into the sum of simple modules. We like these because their isomorphic to a sum of their simple modules.

Example

The group algebra of a group G over a field F is semisimple iff $\text{char}(F)$ does not divide $|G|$. So group algebras over \mathbb{C} are all semisimple.

Theorem

For a finite group G, the simple G-modules are in bijection with conjugacy classes of G.

Proof.

Use (A) class sums, or (B) character theory. Either way, this is not a particularly satisfying bijection, since it doesn't say "given representation X, here's conjugacy class Y, and vice versa."
An algebra is *semisimple* if all of its modules decompose into the sum of simple modules. We like these because their isomorphic to a sum of their simple modules.

Example

The group algebra of a group G over a field F is semisimple iff $\text{char}(F)$ does not divide $|G|$. So group algebras over \mathbb{C} are all semisimple.
An algebra is *semisimple* if all of its modules decompose into the sum of simple modules. We like these because their isomorphic to a sum of their simple modules.

Example
The group algebra of a group G over a field F is semisimple iff $\text{char}(F)$ does not divide $|G|$. So group algebras over \mathbb{C} are all semisimple.

Theorem
*For a finite group G, the simple G-modules are in bijection with conjugacy classes of G.***
An algebra is *semisimple* if all of its modules decompose into the sum of simple modules. We like these because their isomorphic to a sum of their simple modules.

Example
The group algebra of a group G over a field F is semisimple iff $\text{char}(F)$ does not divide $|G|$. So group algebras over \mathbb{C} are all semisimple.

Theorem
For a finite group G, the simple G-modules are in bijection with conjugacy classes of G.

Proof.
Use (A) class sums, or (B) character theory.

\[
\square
\]
An algebra is *semisimple* if all of its modules decompose into the sum of simple modules. We like these because their isomorphic to a sum of their simple modules.

Example
The group algebra of a group G over a field F is semisimple iff $\text{char}(F)$ does not divide $|G|$. So group algebras over \mathbb{C} are all semisimple.

Theorem
For a finite group G, the simple G-modules are in bijection with conjugacy classes of G.

Proof.
Use (A) class sums, or (B) character theory.

Either way, this is not a particularly satisfying bijection, since it doesn’t say “given representation X, here’s conjugacy class Y, and vice versa.”
Character theory

A character χ of a group G corresponding to a representation ρ is a homomorphism

$$\chi_\rho : G \to \mathbb{C} \quad \text{defined by} \quad \chi_\rho : g \to \text{tr}(\rho(g)).$$
Character theory

A character χ of a group G corresponding to a representation ρ is a homomorphism

$$\chi_\rho : G \to \mathbb{C} \quad \text{defined by} \quad \chi_\rho : g \mapsto \text{tr}(\rho(g)).$$

Nice facts about characters:

(1) They’re class functions.
Character theory

A character \(\chi \) of a group \(G \) corresponding to a representation \(\rho \) is a homomorphism

\[\chi_{\rho} : G \to \mathbb{C} \quad \text{defined by} \quad \chi_{\rho} : g \to \text{tr}(\rho(g)). \]

Nice facts about characters:

1. They’re class functions.
2. They satisfy nice relations like

\[\chi_{\rho \oplus \psi} = \chi_{\rho} + \chi_{\psi} \]
\[\chi_{\rho \otimes \psi} = \chi_{\rho} \chi_{\psi} \]
A character χ of a group G corresponding to a representation ρ is a homomorphism

$$\chi_\rho : G \rightarrow \mathbb{C} \text{ defined by } \chi_\rho : g \rightarrow \text{tr}(\rho(g)).$$

Nice facts about characters:

1. They’re class functions.
2. They satisfy nice relations like
 $$\chi_\rho \oplus \psi = \chi_\rho + \chi_\psi$$
 $$\chi_\rho \otimes \psi = \chi_\rho \chi_\psi$$
3. The simple characters form an orthonormal basis for the class functions on G.
Simple symmetric group modules

Conjugacy classes of the symmetric group are given by cycle type.

Example: S_4

$$(a)(b)(c)(d) \quad (ab)(c)(d) \quad (ab)(cd) \quad (abc)(d) \quad (abcd)$$
Simple symmetric group modules

Conjugacy classes of the symmetric group are given by cycle type. Example: S_4

$$(a)(b)(c)(d)\quad (ab)(c)(d)\quad (ab)(cd)\quad (abc)(d)\quad (abcd)$$

Cycle types of permutations of k: are in bijection with partitions $\lambda \vdash k$:

$$\lambda = (\lambda_1, \lambda_2, \ldots) \quad \text{with} \quad \lambda_1 \geq \lambda_2 \geq \ldots, \quad \lambda_i \in \mathbb{Z}_{\geq 0}$$

and $\lambda_1 + \lambda_2 + \cdots = k$.
Simple symmetric group modules

Conjugacy classes of the symmetric group are given by cycle type.

Example: S_4

$$(a)(b)(c)(d) \quad (ab)(c)(d) \quad (ab)(cd) \quad (abc)(d) \quad (abcd)$$

$$(1, 1, 1, 1) \quad (2, 1, 1) \quad (2, 2) \quad (3, 1) \quad (4)$$

Cycle types of permutations of k: are in bijection with partitions $\lambda \vdash k$:

$$\lambda = (\lambda_1, \lambda_2, \ldots) \quad \text{with} \quad \lambda_1 \geq \lambda_2 \geq \ldots, \quad \lambda_i \in \mathbb{Z}_{\geq 0}$$

and $\lambda_1 + \lambda_2 + \cdots = k$.
Simple symmetric group modules

Conjugacy classes of the symmetric group are given by cycle type.

Example: S_4

\[
(a)(b)(c)(d) \quad (ab)(c)(d) \quad (ab)(cd) \quad (abc)(d) \quad (abcd) \\
(1, 1, 1, 1) \quad (2, 1, 1) \quad (2, 2) \quad (3, 1) \quad (4)
\]

Cycle types of permutations of k: are in bijection with partitions $\lambda \vdash k$:

\[
\lambda = (\lambda_1, \lambda_2, \ldots) \quad \text{with} \quad \lambda_1 \geq \lambda_2 \geq \ldots, \quad \lambda_i \in \mathbb{Z}_{\geq 0}
\]

and $\lambda_1 + \lambda_2 + \cdots = k$.

(Pictures are up-left justified arrangements of boxes with λ_i boxes in the ith row.)
More representation theory of S_k

Some combinatorial facts: (without proof)
More representation theory of S_k

Some combinatorial facts: (without proof)

(1) If S^λ is the module indexed by λ, then

$$\text{Ind}_{S_k}^{S_{k+1}}(S^\lambda) = \bigoplus_{\mu \vdash k+1, \mu \in \lambda^+} S^\mu$$

and

$$\text{Res}_{S_{k-1}}^{S_k}(S^\lambda) = \bigoplus_{\mu \vdash k-1, \lambda \in \mu^+} S^\mu$$

where λ^+ is the set of partitions that look like λ plus a box.
More representation theory of \(S_k \)

Some combinatorial facts: (without proof)

1. If \(S^\lambda \) is the module indexed by \(\lambda \), then

\[
\text{Ind}_{S_k}^{S_{k+1}} (S^\lambda) = \bigoplus_{\mu \vdash k+1 \atop \mu \in \lambda^+} S^\mu \quad \text{and} \quad \text{Res}_{S_{k-1}}^{S_k} (S^\lambda) = \bigoplus_{\mu \vdash k-1 \atop \lambda \in \mu^+} S^\mu
\]

where \(\lambda^+ \) is the set of partitions that look like \(\lambda \) plus a box.

2. The basis for \(S^\lambda \) is indexed by downward-moving paths from \(\emptyset \) to \(\lambda \).
More representation theory of S_k

Some combinatorial facts: (without proof)

1. If S^λ is the module indexed by λ, then

 $\text{Ind}_{S_k}^{S_{k+1}}(S^\lambda) = \bigoplus_{\mu \vdash k+1 \atop \mu \in \lambda^+} S^\mu$
 and $\text{Res}_{S_{k-1}}^{S_k}(S^\lambda) = \bigoplus_{\mu \vdash k-1 \atop \lambda \in \mu^+} S^\mu$

 where λ^+ is the set of partitions that look like λ plus a box.

2. The basis for S^λ is indexed by downward-moving paths from \emptyset to λ.

3. The matrix entries for ρ_λ are functions of *contents* of added boxes: the *content* of a box b in row i and column j of a partition as

 $c(b) = j - i$, \hspace{1cm} the diagonal number of b.

 (The matrix entries for the transposition $(i \ i+1)$ are functions of the values on the edges between levels $i - 1$, i, and $i + 1$.)