Math 128: Lecture 10

April 16, 2014
Last time:

For any basis B of \mathfrak{h}^* consisting of roots, the spaces

$$\mathfrak{h}_Q^* = \mathbb{Q}B \quad \text{and} \quad \mathfrak{h}_R^* = \mathbb{R} \otimes \mathbb{Q} \mathfrak{h}_Q^*$$

are Euclidean with inner product given by the Killing form (or any positive rational/real scaling thereof).
Last time:

For any basis B of \mathfrak{h}^* consisting of roots, the spaces

$$\mathfrak{h}^*_\mathbb{Q} = \mathbb{Q}B \quad \text{and} \quad \mathfrak{h}^*_\mathbb{R} = \mathbb{R} \otimes \mathbb{Q} \mathfrak{h}^*_\mathbb{Q}$$

are Euclidean with inner product given by the Killing form (or any positive rational/real scaling thereof).

Let \mathfrak{h}_α be the hyperplane in $\mathfrak{h}^*_\mathbb{R}$ given by

$$\mathfrak{h}_\alpha = \{ \lambda \in \mathfrak{h}^*_\mathbb{R} \mid \langle \lambda, \alpha \rangle = 0 \}.$$

Let $\sigma_\alpha : \mathfrak{h}^*_\mathbb{R} \rightarrow \mathfrak{h}^*_\mathbb{R}$, given by

$$\sigma_\alpha : \lambda \mapsto \lambda - 2 \frac{\langle \alpha, \lambda \rangle}{\langle \alpha, \alpha \rangle} \alpha,$$

be the reflection of weights across the hyperplane \mathfrak{h}_α. This map sends roots to roots.
Last time:

For any basis B of \mathfrak{h}^* consisting of roots, the spaces

$$\mathfrak{h}_Q^* = \mathbb{Q}B \quad \text{and} \quad \mathfrak{h}_R^* = \mathbb{R} \otimes_{\mathbb{Q}} \mathfrak{h}_Q^*$$

are Euclidean with inner product given by the Killing form (or any positive rational/real scaling thereof).

Let \mathfrak{h}_α be the hyperplane in \mathfrak{h}_R^* given by

$$\mathfrak{h}_\alpha = \{ \lambda \in \mathfrak{h}_R^* \mid \langle \lambda, \alpha \rangle = 0 \}.$$

Let $\sigma_\alpha : \mathfrak{h}_R^* \to \mathfrak{h}_R^*$, given by

$$\sigma_\alpha : \lambda \mapsto \lambda - 2 \frac{\langle \alpha, \lambda \rangle}{\langle \alpha, \alpha \rangle} \alpha,$$

be the reflection of weights across the hyperplane \mathfrak{h}_α. This map sends roots to roots.

The group W generated by $\{ \sigma_\alpha \mid \alpha \in R^+ \}$ is called the Weyl group associated to \mathfrak{g}.

Example: $g = \mathfrak{sl}_3$
Let $B = \{\beta_1, \beta_2\}$ and $R^+ = \{\beta_1, \beta_2, \beta_1 + \beta_2\}$ with $\beta_i = \varepsilon_i - \varepsilon_{i+1}$
Example: \(g = \mathfrak{sl}_3 \)

Let \(B = \{\beta_1, \beta_2\} \) and \(R^+ = \{\beta_1, \beta_2, \beta_1 + \beta_2\} \) with \(\beta_i = \varepsilon_i - \varepsilon_{i+1} \)
Example: $g = \mathfrak{sl}_3$

Let $B = \{\beta_1, \beta_2\}$ and $R^+ = \{\beta_1, \beta_2, \beta_1 + \beta_2\}$ with $\beta_i = \varepsilon_i - \varepsilon_{i+1}$
Example: $\mathfrak{g} = \mathfrak{sl}_3$

Let $B = \{\beta_1, \beta_2\}$ and $R^+ = \{\beta_1, \beta_2, \beta_1 + \beta_2\}$ with $\beta_i = \varepsilon_i - \varepsilon_{i+1}$
Example: $g = \mathfrak{sl}_3$

Let $B = \{\beta_1, \beta_2\}$ and $R^+ = \{\beta_1, \beta_2, \beta_1 + \beta_2\}$ with $\beta_i = \varepsilon_i - \varepsilon_{i+1}$

The *positive* side of a hyperplane h_α is the side corresponding to whichever of $\pm \alpha$ is in R^+.

![Diagram of hyperplanes and fundamental chamber](image-url)
Example: $g = \mathfrak{sl}_3$

Let $B = \{\beta_1, \beta_2\}$ and $R^+ = \{\beta_1, \beta_2, \beta_1 + \beta_2\}$ with $\beta_i = \varepsilon_i - \varepsilon_{i+1}$, and let $s_1 = \sigma_{\beta_1}$ and $s_2 = \sigma_{\beta_2}$.

The positive side of a hyperplane \mathfrak{h}_α is the side corresponding to whichever of $\pm \alpha$ is in R^+.
Example: \(g = \mathfrak{sl}_3 \)

Let \(B = \{ \beta_1, \beta_2 \} \) and \(R^+ = \{ \beta_1, \beta_2, \beta_1 + \beta_2 \} \) with \(\beta_i = \varepsilon_i - \varepsilon_{i+1} \), and let \(s_1 = \sigma_{\beta_1} \) and \(s_2 = \sigma_{\beta_2} \).

The positive side of a hyperplane \(h_\alpha \) is the side corresponding to whichever of \(\pm \alpha \) is in \(R^+ \).
Example: $g = \mathfrak{sl}_3$

Let $B = \{\beta_1, \beta_2\}$ and $R^+ = \{\beta_1, \beta_2, \beta_1 + \beta_2\}$ with $\beta_i = \varepsilon_i - \varepsilon_{i+1}$, and let $s_1 = \sigma_{\beta_1}$ and $s_2 = \sigma_{\beta_2}$.

The positive side of a hyperplane h_α is the side corresponding to whichever of $\pm \alpha$ is in R^+.

h_{β_1}

$h_{\beta_1 + \beta_2} - + s_1(\lambda)$

$\lambda - + +$

h_{β_2}
Example: $g = \mathfrak{sl}_3$

Let $B = \{\beta_1, \beta_2\}$ and $R^+ = \{\beta_1, \beta_2, \beta_1 + \beta_2\}$ with $\beta_i = \varepsilon_i - \varepsilon_{i+1}$, and let $s_1 = \sigma_{\beta_1}$ and $s_2 = \sigma_{\beta_2}$.

The positive side of a hyperplane h_α is the side corresponding to whichever of $\pm \alpha$ is in R^+.
Example: $\mathfrak{g} = \mathfrak{sl}_3$

Let $B = \{\beta_1, \beta_2\}$ and $R^+ = \{\beta_1, \beta_2, \beta_1 + \beta_2\}$ with $\beta_i = \varepsilon_i - \varepsilon_{i+1}$, and let $s_1 = \sigma_{\beta_1}$ and $s_2 = \sigma_{\beta_2}$.

The *positive* side of a hyperplane h_α is the side corresponding to whichever of $\pm \alpha$ is in R^+.
Example: $g = \mathfrak{sl}_3$

Let $B = \{\beta_1, \beta_2\}$ and $R^+ = \{\beta_1, \beta_2, \beta_1 + \beta_2\}$ with $\beta_i = \varepsilon_i - \varepsilon_{i+1}$, and let $s_1 = \sigma_{\beta_1}$ and $s_2 = \sigma_{\beta_2}$.

The positive side of a hyperplane h_α is the side corresponding to whichever of $\pm \alpha$ is in R^+.
Example: \(g = \mathfrak{sl}_3 \)

Let \(B = \{\beta_1, \beta_2\} \) and \(R^+ = \{\beta_1, \beta_2, \beta_1 + \beta_2\} \) with \(\beta_i = \varepsilon_i - \varepsilon_{i+1} \), and let \(s_1 = \sigma_{\beta_1} \) and \(s_2 = \sigma_{\beta_2} \).

The positive side of a hyperplane \(h_\alpha \) is the side corresponding to whichever of \(\pm \alpha \) is in \(R^+ \).
Example: $g = \mathfrak{sl}_3$

Let $B = \{\beta_1, \beta_2\}$ and $R^+ = \{\beta_1, \beta_2, \beta_1 + \beta_2\}$ with $\beta_i = \varepsilon_i - \varepsilon_{i+1}$, and let $s_1 = \sigma_{\beta_1}$ and $s_2 = \sigma_{\beta_2}$.

The positive side of a hyperplane h_α is the side corresponding to whichever of $\pm \alpha$ is in R^+.
Example: \(g = \mathfrak{sl}_3 \)

Let \(B = \{\beta_1, \beta_2\} \) and \(R^+ = \{\beta_1, \beta_2, \beta_1 + \beta_2\} \) with \(\beta_i = \varepsilon_i - \varepsilon_{i+1} \), and let \(s_1 = \sigma_{\beta_1} \) and \(s_2 = \sigma_{\beta_2} \).

The positive side of a hyperplane \(h_\alpha \) is the side corresponding to whichever of \(\pm \alpha \) is in \(R^+ \). The fundamental chamber is the region of \(h_\alpha^* \) that is on the positive side of every \(h_\alpha, \alpha \in R \). Every element of \(h_\alpha^* \) is in the \(W \)-orbit of the closure of the fundamental chamber.
Recall classifying finite-dimensional simple $\mathfrak{sl}_2(\mathbb{C})$-modules V:

1. h has at least one weight vector $v \in V$. Use $hx = xh + [h, x]$ to show that $\{x^\ell v^+ \mid \ell \in \mathbb{Z}_{\geq 0}\}$ are also w.v.’s with distinct weights.

2. Since the weights of h on the $x^\ell v$’s are distinct, the non-zero $x^\ell v$’s are distinct. So since V is f.d., there must be $0 \neq v^+ \in V$ with

$$xv^+ = 0 \quad \text{and} \quad hv^+ = \mu v^+ \text{ for some } \mu \in \mathbb{C}.$$

The vector v^+ is called primitive or a highest weight vector.

3. Use $hy = yh + [h, y]$ to show that $\{y^\ell v^+ \mid \ell \in \mathbb{Z}_{\geq 0}\}$ are also weight vectors with distinct weights. So again, since V is finite-dimensional, there must be some $d \in \mathbb{Z}_{\geq 0}$ with $y^dv^+ \neq 0$ and $y^{d+1}v^+ = 0$.

4. Use $xy = yx + h$ to show $xy^\ell v^+ = \ell(\mu - (\ell - 1))$, so that $V = \{y^\ell v^+ \mid \ell = 0, 1, \ldots, d\}$.

5. Looking at the $(d+1, d+1)$ entry of h, use $[x, y] = h$ to show $\mu = d$.

Finite dimensional representations of \mathfrak{g}

New strategy:
Replace x with \mathfrak{n}^+, y with \mathfrak{n}^-, and h with \mathfrak{h}.
Let V be a finite-dimensional \mathfrak{g}-module.
Finite dimensional representations of g

New strategy:
Replace x with n^+, y with n^-, and h with \mathfrak{h}.
Let V be a finite-dimensional g-module.
Look for a highest weight vector (a primitive element), i.e. v^+ satisfying

$$hv^+ = \lambda(h)v^+ \quad \text{and} \quad xv^+ = 0$$

for some $\lambda \in \mathfrak{h}^*$ and all $h \in \mathfrak{h}$, $x \in n^+$.

Show $V = U_{n^-v^+}$.

Classify λ and the resulting structure.

A base B for a set of roots R is a subset of R forming a basis of \mathfrak{h}^* which additionally satisfies

$$\alpha = \pm \sum_{\beta \in B} z_{\beta} \beta$$

with $z_{\beta} \in \mathbb{Z} \geq 0$ for all $\alpha \in R$.

Given a base B, let $R^+ = R \cap \mathbb{Z} \geq 0$.

(We will prove the existence of a base for R later, but we take existence for granted for now.)
Finite dimensional representations of \mathfrak{g}

New strategy:
Replace x with n^+, y with n^-, and h with \mathfrak{h}.
Let V be a finite-dimensional \mathfrak{g}-module.
Look for a highest weight vector (a primitive element), i.e. v^+ satisfying

$$hv^+ = \lambda(h)v^+ \quad \text{and} \quad xv^+ = 0$$

for some $\lambda \in \mathfrak{h}^*$ and all $h \in \mathfrak{h}$, $x \in n^+$.
Show $V = U^n^+ v^+$.

Finite dimensional representations of \mathfrak{g}

New strategy:
Replace x with \mathfrak{n}^+, y with \mathfrak{n}^-, and h with \mathfrak{h}.
Let V be a finite-dimensional \mathfrak{g}-module.
Look for a highest weight vector (a primitive element), i.e. v^+ satisfying

$$hv^+ = \lambda(h)v^+ \quad \text{and} \quad xv^+ = 0$$

for some $\lambda \in \mathfrak{h}^*$ and all $h \in \mathfrak{h}$, $x \in \mathfrak{n}^+$.
Show $V = Un^-v^+$.
Classify λ and the resulting structure.
Finite dimensional representations of \mathfrak{g}

New strategy:
Replace x with \mathfrak{n}^+, y with \mathfrak{n}^-, and h with \mathfrak{h}.
Let V be a finite-dimensional \mathfrak{g}-module.
Look for a highest weight vector (a primitive element), i.e. v^+ satisfying
$$hv^+ = \lambda(h)v^+ \quad \text{and} \quad xv^+ = 0$$
for some $\lambda \in \mathfrak{h}^*$ and all $h \in \mathfrak{h}$, $x \in \mathfrak{n}^+$.
Show $V = Un^-v^+$.
Classify λ and the resulting structure.

A *base* B for a set of roots R is a subset of R forming a basis of \mathfrak{h}^* which additionally satisfies
$$\alpha = \pm \sum_{\beta \in B} z_\beta \beta \quad \text{with} \quad z_\beta \in \mathbb{Z}_{\geq 0} \quad \text{for all} \quad \alpha \in R.$$

Given a base B, let $R^+ = R \cap \mathbb{Z}_{\geq 0}B$. (We will prove the existence of a base for R later, but we take existence for granted for now.)
Finite dimensional representations of \mathfrak{g}

Let V be a finite-dimensional \mathfrak{g}-module. Let \mathfrak{h} be a Cartan subalgebra of \mathfrak{g}, so that the elements of \mathfrak{h} are simultaneously diagonalizable.
Finite dimensional representations of \(g \)

Let \(V \) be a finite-dimensional \(g \)-module.
Let \(\mathfrak{h} \) be a Cartan subalgebra of \(g \), so that the elements of \(\mathfrak{h} \) are simultaneously diagonalizable. So as a \(\mathfrak{h} \)-module,

\[
V = \bigoplus_{\lambda \in \mathfrak{h}^*} V_{\lambda} \quad \text{where} \quad V_{\lambda} = \{ v \in V \mid hv = \lambda(h)v \}.
\]
Finite dimensional representations of \mathfrak{g}

Let V be a finite-dimensional \mathfrak{g}-module. Let \mathfrak{h} be a Cartan subalgebra of \mathfrak{g}, so that the elements of \mathfrak{h} are simultaneously diagonalizable. So as a \mathfrak{h}-module,

$$V = \bigoplus_{\lambda \in \mathfrak{h}^*} V_\lambda$$

where $V_\lambda = \{ v \in V \mid hv = \lambda(h)v \}$.

For $v \in V_\lambda$, $h \in \mathfrak{h}$, and $x \in \mathfrak{g}_\alpha$ for some $\alpha \in R$,

$$hxv = (xh + [h, x])v = (\lambda(h) + \alpha(h))xv.$$
Let V be a finite-dimensional \mathfrak{g}-module.
Let \mathfrak{h} be a Cartan subalgebra of \mathfrak{g}, so that the elements of \mathfrak{h} are simultaneously diagonalizable. So as a \mathfrak{h}-module,

$$V = \bigoplus_{\lambda \in \mathfrak{h}^*} V_{\lambda} \quad \text{where} \quad V_{\lambda} = \{v \in V \mid h v = \lambda(h)v\}.$$

For $v \in V_{\lambda}$, $h \in \mathfrak{h}$, and $x \in \mathfrak{g}_\alpha$ for some $\alpha \in R$,

$$hxv = (xh + [h, x])v = (\lambda(h) + \alpha(h))xv.$$

So for $\alpha_i \in R$ and $x_i \in \mathfrak{g}_{\alpha_i}$,

$$hx_1 \cdots x_m v = \left(\lambda(h) + \sum_{i=1}^{m} \alpha_i(h) \right) x_1 \cdots x_m v. \quad (\ast)$$
Finite dimensional representations of \(\mathfrak{g} \)

Let \(V \) be a finite-dimensional \(\mathfrak{g} \)-module.
Let \(\mathfrak{h} \) be a Cartan subalgebra of \(\mathfrak{g} \), so that the elements of \(\mathfrak{h} \) are simultaneously diagonalizable. So as a \(\mathfrak{h} \)-module,

\[
V = \bigoplus_{\lambda \in \mathfrak{h}^*} V_{\lambda} \quad \text{where} \quad V_{\lambda} = \{ v \in V \mid h v = \lambda(h)v \}.
\]

For \(v \in V_{\lambda}, \ h \in \mathfrak{h}, \ \text{and} \ x \in \mathfrak{g}_\alpha \ \text{for some} \ \alpha \in R, \)

\[
hxv = (xh + [h, x])v = (\lambda(h) + \alpha(h))xv.
\]

So for \(\alpha_i \in R \) and \(x_i \in \mathfrak{g}_{\alpha_i}, \)

\[
hx_1 \cdots x_m v = \left(\lambda(h) + \sum_{i=1}^{m} \alpha_i(h) \right) x_1 \cdots x_m v. \quad (\ast)
\]

Goal 1: Establish \(xv = 0 \) for all but finitely many words \(x = x_1 \cdots x_m \) with \(\alpha_i \in R^+ \).